Suppr超能文献

funtrp:鉴定变异驱动功能调控的蛋白质位置。

funtrp: identifying protein positions for variation driven functional tuning.

机构信息

Department of Biochemistry and Microbiology, Rutgers University, 76 Lipman Dr, New Brunswick, NJ 08901, USA.

Columbian College of Arts and Sciences Data Science Program Corcoran Hall, 725 21st Street NW, Washington, DC 20052, USA.

出版信息

Nucleic Acids Res. 2019 Dec 2;47(21):e142. doi: 10.1093/nar/gkz818.

Abstract

Evaluating the impact of non-synonymous genetic variants is essential for uncovering disease associations and mechanisms of evolution. An in-depth understanding of sequence changes is also fundamental for synthetic protein design and stability assessments. However, the variant effect predictor performance gain observed in recent years has not kept up with the increased complexity of new methods. One likely reason for this might be that most approaches use similar sets of gene and protein features for modeling variant effects, often emphasizing sequence conservation. While high levels of conservation highlight residues essential for protein activity, much of the variation observable in vivo is arguably weaker in its impact, thus requiring evaluation at a higher level of resolution. Here, we describe functionNeutral/Toggle/Rheostatpredictor (funtrp), a novel computational method that categorizes protein positions based on the position-specific expected range of mutational impacts: Neutral (weak/no effects), Rheostat (function-tuning positions), or Toggle (on/off switches). We show that position types do not correlate strongly with familiar protein features such as conservation or protein disorder. We also find that position type distribution varies across different protein functions. Finally, we demonstrate that position types can improve performance of existing variant effect predictors and suggest a way forward for the development of new ones.

摘要

评估非同义遗传变异对揭示疾病关联和进化机制至关重要。深入了解序列变化对于合成蛋白质设计和稳定性评估也至关重要。然而,近年来观察到的变体效应预测器性能增益并没有跟上新方法日益增加的复杂性。造成这种情况的一个可能原因是,大多数方法在建模变体效应时使用相似的基因和蛋白质特征集,通常强调序列保守性。虽然高水平的保守性突出了对蛋白质活性至关重要的残基,但在体内观察到的许多变异在其影响方面可能较弱,因此需要在更高分辨率的水平进行评估。在这里,我们描述了功能中立/切换/变阻器预测器(funtrp),这是一种新的计算方法,它可以根据位置特异性的突变影响预期范围对蛋白质位置进行分类:中立(弱/无影响)、变阻器(功能调整位置)或切换(开/关开关)。我们表明,位置类型与熟悉的蛋白质特征(如保守性或蛋白质无序性)相关性不强。我们还发现,位置类型分布在不同的蛋白质功能之间存在差异。最后,我们证明位置类型可以提高现有变体效应预测器的性能,并为新预测器的开发提出了一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa29/6868392/075dd999f271/gkz818fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验