Suppr超能文献

早期哺乳期健康血清生物标志物的基因组预测。

Genomic prediction of serum biomarkers of health in early lactation.

机构信息

Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia.

Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia.

出版信息

J Dairy Sci. 2019 Dec;102(12):11142-11152. doi: 10.3168/jds.2019-17127. Epub 2019 Oct 3.

Abstract

In this study, we estimated genetic parameters and genomic prediction accuracies of serum biomarkers of health in early-lactation dairy cows. A single serum sample was taken from 1,393 cows, located on 14 farms in southeastern Australia, within 30 d after calving. Sera were analyzed for biomarkers of energy balance (β-hydroxybutyrate and fatty acids), macromineral status (Ca and Mg), protein nutritional status (urea and albumin), and immune status (globulins, albumin-to-globulin ratio, and haptoglobin). After editing, 47,162 SNP marker genotypes were used to estimate genomic heritabilities and breeding values (GEBV) for these traits in ASReml. Heritabilities were low for β-hydroxybutyrate, fatty acids, Ca, Mg, and urea (0.09 ± 0.04, 0.18 ± 0.05, 0.07 ± 0.04, 0.19 ± 0.06, and 0.18 ± 0.05, respectively), and moderate for albumin, globulins, and albumin-to-globulin ratio (0.27 ± 0.06, 0.46 ± 0.06, and 0.41 ± 0.06, respectively). The heritability of haptoglobin concentration was close to 0. The magnitude of genetic correlations between traits (estimated using bivariate models) varied considerably (0.01 to 0.96), and standard errors of these correlations were high (0.02 to 0.44). Interestingly, the direction of most genetic correlations was favorable, suggesting that selecting for more optimal concentrations of one biomarker may result in more optimal concentrations of other biomarkers. Correlations between biomarker GEBV and existing breeding values for survival, somatic cell count, and daughter fertility were small to moderate (0.07 to 0.45) and favorable, whereas correlations with breeding values for milk production traits were small (≤0.15). Accuracies of GEBV were evaluated by using 5-fold cross validation, and by calculating accuracies from prediction error variances associated with the GEBV. Accuracies of GEBV predicted using 5-fold cross validation were low (0.05 to 0.27), whereas the means of individual accuracies were greater, ranging from 0.31 to 0.51. Although increasing the size of the reference population should theoretically improve accuracies, our results suggest that genomic prediction of health biomarkers may allow identification of cows that are less susceptible to diseases in early lactation.

摘要

在这项研究中,我们估计了泌乳早期奶牛血清健康生物标志物的遗传参数和基因组预测准确性。从位于澳大利亚东南部 14 个农场的 1393 头奶牛中,在产后 30 天内采集了单个血清样本。对血清中的能量平衡生物标志物(β-羟丁酸和脂肪酸)、宏量矿物质状态(钙和镁)、蛋白质营养状况(尿素和白蛋白)和免疫状态(球蛋白、白蛋白与球蛋白比值和触珠蛋白)进行了分析。在编辑后,使用 ASReml 估算了这些性状的 47162 个 SNP 标记基因型的基因组遗传力和育种值(GEBV)。β-羟丁酸、脂肪酸、钙、镁和尿素的遗传力较低(分别为 0.09 ± 0.04、0.18 ± 0.05、0.07 ± 0.04、0.19 ± 0.06 和 0.18 ± 0.05),白蛋白、球蛋白和白蛋白与球蛋白比值的遗传力中等(分别为 0.27 ± 0.06、0.46 ± 0.06 和 0.41 ± 0.06)。触珠蛋白浓度的遗传力接近 0.96),这些相关性的标准误差较高(0.02 至 0.44)。有趣的是,大多数遗传相关性的方向是有利的,这表明选择一种生物标志物的更优化浓度可能会导致其他生物标志物的更优化浓度。生物标志物 GEBV 与生存、体细胞计数和女儿生育力的现有育种值之间的相关性较小至中等(0.07 至 0.45),并且是有利的,而与产奶性状的育种值相关性较小(≤0.15)。通过使用 5 折交叉验证和计算与 GEBV 相关的预测误差方差来评估 GEBV 的准确性。使用 5 折交叉验证预测的 GEBV 准确性较低(0.05 至 0.27),而个体准确性的平均值较大,范围从 0.31 到 0.51。尽管理论上增加参考群体的规模应该会提高准确性,但我们的结果表明,对健康生物标志物的基因组预测可以识别出在泌乳早期不易患病的奶牛。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验