Chen Elton Y, Deo Chaitanya, Dingreville Rémi
Nuclear & Radiological Engineering Program, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America. Center for Integrated Nanotechnologies, Department of Nanostructure Physics, Sandia National Laboratories, Albuquerque, NM, United States of America.
J Phys Condens Matter. 2020 Jan 23;32(4):045402. doi: 10.1088/1361-648X/ab4b7c. Epub 2019 Oct 7.
Atomistic modeling of radiation damage through displacement cascades is deceptively non-trivial. Due to the high energy and stochastic nature of atomic collisions, individual primary knock-on atom (PKA) cascade simulations are computationally expensive and ill-suited for length and dose upscaling. Here, we propose a reduced-order atomistic cascade model capable of predicting and replicating radiation events in metals across a wide range of recoil energies. Our methodology approximates cascade and displacement damage production by modeling the cascade as a core-shell atomic structure composed of two damage production estimators, namely an athermal recombination corrected displacements per atom (arc-dpa) in the shell and a replacements per atom (rpa) representing atomic mixing in the core. These estimators are calibrated from explicit PKA simulations and a standard displacement damage model that incorporates cascade defect production efficiency and mixing effects. We illustrate the predictability and accuracy of our reduced-order atomistic cascade method for the cases of copper and niobium by comparing its results with those from full PKA simulations in terms of defect production as well as the resulting cascade evolution and structure. We provide examples for simulating high energy cascade fragmentation and large dose ion-bombardment to demonstrate its possible applicability. Finally, we discuss the various practical considerations and challenges associated with this methodology especially when simulating subcascade formation and dose effects.
通过位移级联进行辐射损伤的原子尺度建模看似简单,实则不然。由于原子碰撞具有高能量和随机性,单个初级撞出原子(PKA)级联模拟计算成本高昂,且不适用于长度和剂量的放大。在此,我们提出一种降阶原子级联模型,它能够预测和复制各种反冲能量下金属中的辐射事件。我们的方法通过将级联建模为一种核壳原子结构来近似级联和位移损伤产生,该结构由两个损伤产生估计器组成,即壳层中的非热复合修正每个原子的位移(arc-dpa)和代表核心中原子混合的每个原子的替换数(rpa)。这些估计器是根据显式PKA模拟和一个包含级联缺陷产生效率和混合效应的标准位移损伤模型进行校准的。通过将我们的降阶原子级联方法在缺陷产生以及由此产生的级联演化和结构方面的结果与全PKA模拟的结果进行比较,我们说明了该方法对于铜和铌的情况的可预测性和准确性。我们提供了模拟高能级联碎片化和大剂量离子轰击的示例,以证明其可能的适用性。最后,我们讨论了与该方法相关的各种实际考虑因素和挑战,特别是在模拟亚级联形成和剂量效应时。