Chen Elton Y, Hopper Cameron P, Santhapuram Raghuram R, Dingreville Rémi, Nair Arun K
Center for Integrated Nanotechnologies, Department of Nanostructure Physics, Sandia National Laboratories, Albuquerque, NM, 87185, USA.
Multiscale Materials Modeling Lab, Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR, 72701, USA.
Sci Rep. 2021 Sep 30;11(1):19526. doi: 10.1038/s41598-021-98652-y.
Silicon-based layered nanocomposites, comprised of covalent-metal interfaces, have demonstrated elevated resistance to radiation. The amorphization of the crystalline silicon sublayer during irradiation and/or heating can provide an additional mechanism for accommodating irradiation-induced defects. In this study, we investigated the mechanical strength of irradiated Si-based nanocomposites using atomistic modeling. We first examined dose effects on the defect evolution mechanisms near silicon-gold crystalline and amorphous interfaces. Our simulations reveal the growth of an emergent amorphous interfacial layer with increasing dose, a dominant factor mitigating radiation damage. We then examined the effect of radiation on the mechanical strength of silicon-gold multilayers by constructing yield surfaces. These results demonstrate a rapid onset strength loss with dose. Nearly identical behavior is observed in bulk gold, a phenomenon that can be rooted to the formation of radiation-induced stacking fault tetrahedra which dominate the dislocation emission mechanism during mechanical loading. Taken together, these results advance our understanding of the interaction between radiation-induced point defects and metal-covalent interfaces.
由共价 - 金属界面组成的硅基层状纳米复合材料已表现出对辐射的增强抗性。在辐照和/或加热过程中,晶体硅子层的非晶化可为容纳辐照诱导缺陷提供额外机制。在本研究中,我们使用原子模拟研究了辐照后的硅基纳米复合材料的机械强度。我们首先研究了剂量对硅 - 金晶体和非晶界面附近缺陷演化机制的影响。我们的模拟揭示了随着剂量增加,出现了一个新兴的非晶界面层,这是减轻辐射损伤的一个主要因素。然后,我们通过构建屈服面研究了辐射对硅 - 金多层膜机械强度的影响。这些结果表明强度随剂量迅速下降。在块状金中观察到几乎相同的行为,这种现象可归因于辐射诱导的堆垛层错四面体的形成,这些四面体在机械加载过程中主导位错发射机制。综上所述,这些结果增进了我们对辐射诱导点缺陷与金属 - 共价界面之间相互作用的理解。