Suppr超能文献

使用具有像差校正的完全填充超声阵列模拟非线性跨颅骨聚焦和脑内冲击波的形成。

Simulation of nonlinear trans-skull focusing and formation of shocks in brain using a fully populated ultrasound array with aberration correction.

机构信息

Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia.

Andreyev Acoustics Institute, Russian Federation, Moscow 117036, Russia.

出版信息

J Acoust Soc Am. 2019 Sep;146(3):1786. doi: 10.1121/1.5126685.

Abstract

Multi-element high-intensity focused ultrasound phased arrays in the shape of hemispheres are currently used in clinics for thermal lesioning in deep brain structures. Certain side effects of overheating non-targeted tissues and skull bones have been revealed. Here, an approach is developed to mitigate these effects. A specific design of a fully populated 256-element 1-MHz array shaped as a spherical segment (F-number, F = 1) and filled by randomly distributed equal-area polygonal elements is proposed. Capability of the array to generate high-amplitude shock fronts at the focus is tested in simulations by combining three numerical algorithms for linear and nonlinear field modeling and aberration correction. The algorithms are based on the combination of the Rayleigh integral, a linear pseudo-spectral time domain Kelvin-Voigt model, and nonlinear Westervelt model to account for the effects of inhomogeneities, aberrations, reflections, absorption, nonlinearity, and shear waves in the skull. It is shown that the proposed array can generate nonlinear waveforms with shock amplitudes >60 MPa at the focus deep inside the brain without exceeding the existing technical limitation on the intensity of 40 W/cm at the array elements. Such shock amplitudes are sufficient for mechanical ablation of brain tissues using the boiling histotripsy approach and implementation of other shock-based therapies.

摘要

目前,用于深部脑结构热损伤的半球形多元素高强度聚焦超声相控阵已在临床上使用。已经发现了某些过热非靶向组织和颅骨的副作用。在这里,提出了一种减轻这些影响的方法。提出了一种特定的设计,即用随机分布的等面积多边形元素填充的全填充 256 元 1MHz 球形段(F 数,F = 1)相控阵。通过结合用于线性和非线性场建模和像差校正的三种数值算法在模拟中测试了该阵列在焦点处产生高振幅冲击波的能力。该算法基于瑞利积分、线性伪谱时域 Kelvin-Voigt 模型和非线性 Westervelt 模型的组合,以考虑颅骨中的不均匀性、像差、反射、吸收、非线性和剪切波的影响。结果表明,所提出的阵列可以在大脑深处的焦点处产生超过 60MPa 的非线性波形,而不会超过阵列元件处 40W/cm 的现有技术强度限制。这种冲击波幅度足以使用沸腾组织消融法消融脑组织,并实施其他基于冲击波的治疗。

相似文献

2
Phase-Aberration Correction for HIFU Therapy Using a Multielement Array and Backscattering of Nonlinear Pulses.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Apr;68(4):1040-1050. doi: 10.1109/TUFFC.2020.3030890. Epub 2021 Mar 26.
3
Design of HIFU transducers to generate specific nonlinear ultrasound fields.
Phys Procedia. 2016;87:132-138. doi: 10.1016/j.phpro.2016.12.020.
4
Characterization of nonlinear ultrasound fields of 2D therapeutic arrays.
IEEE Int Ultrason Symp. 2012 Oct 7;2012:1-4. doi: 10.1109/ULTSYM.2012.0231.
5
In Vivo Aberration Correction for Transcutaneous HIFU Therapy Using a Multielement Array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Oct;69(10):2955-2964. doi: 10.1109/TUFFC.2022.3200309. Epub 2022 Sep 27.
6
Modulation of transcranial focusing thermal deposition in nonlinear HIFU brain surgery by numerical simulation.
Phys Med Biol. 2015 May 21;60(10):3975-98. doi: 10.1088/0031-9155/60/10/3975. Epub 2015 Apr 28.
9
A numerical study of transcranial focused ultrasound beam propagation at low frequency.
Phys Med Biol. 2005 Apr 21;50(8):1821-36. doi: 10.1088/0031-9155/50/8/013. Epub 2005 Apr 6.
10
Treatment of near-skull brain tissue with a focused device using shear-mode conversion: a numerical study.
Phys Med Biol. 2007 Dec 21;52(24):7313-32. doi: 10.1088/0031-9155/52/24/008. Epub 2007 Dec 5.

引用本文的文献

1
xDDx: A Numerical Toolbox for Ultrasound Transducer Characterization and Design With Acoustic Holography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2025 May;72(5):564-580. doi: 10.1109/TUFFC.2025.3542405. Epub 2025 May 7.
2
A comparative study of experimental and simulated ultrasound beam propagation through cranial bones.
Phys Med Biol. 2025 Jan 15;70(2):025007. doi: 10.1088/1361-6560/ada19d.
3
Histotripsy: A Method for Mechanical Tissue Ablation with Ultrasound.
Annu Rev Biomed Eng. 2024 Jul;26(1):141-167. doi: 10.1146/annurev-bioeng-073123-022334. Epub 2024 Jun 20.
4
Treatment Planning and Aberration Correction Algorithm for HIFU Ablation of Renal Tumors.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Mar;71(3):341-353. doi: 10.1109/TUFFC.2024.3355390. Epub 2024 Feb 27.
5
The histotripsy spectrum: differences and similarities in techniques and instrumentation.
Int J Hyperthermia. 2023;40(1):2233720. doi: 10.1080/02656736.2023.2233720.
6
A Comparative Feasibility Study for Transcranial Extracorporeal Shock Wave Therapy.
Biomedicines. 2022 Jun 20;10(6):1457. doi: 10.3390/biomedicines10061457.
7
A Modular, Kerf-Minimizing Approach for Therapeutic Ultrasound Phased Array Construction.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Oct;69(10):2766-2775. doi: 10.1109/TUFFC.2022.3178291. Epub 2022 Sep 27.
8
Transcranial ultrasound stimulation of the human motor cortex.
iScience. 2021 Nov 13;24(12):103429. doi: 10.1016/j.isci.2021.103429. eCollection 2021 Dec 17.
9
"HIFU Beam:" A Simulator for Predicting Axially Symmetric Nonlinear Acoustic Fields Generated by Focused Transducers in a Layered Medium.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Sep;68(9):2837-2852. doi: 10.1109/TUFFC.2021.3074611. Epub 2021 Aug 27.
10
Bilayer aberration-inducing gel phantom for high intensity focused ultrasound applications.
J Acoust Soc Am. 2020 Dec;148(6):3569. doi: 10.1121/10.0002877.

本文引用的文献

1
In vivo histotripsy brain treatment.
J Neurosurg. 2018 Oct 12;131(4):1331-1338. doi: 10.3171/2018.4.JNS172652. Print 2019 Oct 1.
2
Method for Designing Multielement Fully Populated Random Phased Arrays for Ultrasound Surgery Applications.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Apr;65(4):630-637. doi: 10.1109/TUFFC.2018.2800160.
3
Design of HIFU transducers to generate specific nonlinear ultrasound fields.
Phys Procedia. 2016;87:132-138. doi: 10.1016/j.phpro.2016.12.020.
4
Ex vivo optimisation of a heterogeneous speed of sound model of the human skull for non-invasive transcranial focused ultrasound at 1 MHz.
Int J Hyperthermia. 2017 Sep;33(6):635-645. doi: 10.1080/02656736.2017.1295322. Epub 2017 Mar 7.
5
Evaluation of a novel therapeutic focused ultrasound transducer based on Fermat's spiral.
Phys Med Biol. 2017 Jun 21;62(12):5021-5045. doi: 10.1088/1361-6560/aa716c. Epub 2017 May 5.
7
Design of HIFU Transducers for Generating Specified Nonlinear Ultrasound Fields.
IEEE Trans Ultrason Ferroelectr Freq Control. 2017 Feb;64(2):374-390. doi: 10.1109/TUFFC.2016.2619913. Epub 2016 Oct 20.
8
Image-guided ultrasound phased arrays are a disruptive technology for non-invasive therapy.
Phys Med Biol. 2016 Sep 7;61(17):R206-48. doi: 10.1088/0031-9155/61/17/R206. Epub 2016 Aug 5.
9
Pulsed High-Intensity Focused Ultrasound Enhances Delivery of Doxorubicin in a Preclinical Model of Pancreatic Cancer.
Cancer Res. 2015 Sep 15;75(18):3738-46. doi: 10.1158/0008-5472.CAN-15-0296. Epub 2015 Jul 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验