Department of Acoustics, Physics Faculty, Moscow State University, Leninskie Gory, Moscow 119991, Russia.
Andreyev Acoustics Institute, Russian Federation, Moscow 117036, Russia.
J Acoust Soc Am. 2019 Sep;146(3):1786. doi: 10.1121/1.5126685.
Multi-element high-intensity focused ultrasound phased arrays in the shape of hemispheres are currently used in clinics for thermal lesioning in deep brain structures. Certain side effects of overheating non-targeted tissues and skull bones have been revealed. Here, an approach is developed to mitigate these effects. A specific design of a fully populated 256-element 1-MHz array shaped as a spherical segment (F-number, F = 1) and filled by randomly distributed equal-area polygonal elements is proposed. Capability of the array to generate high-amplitude shock fronts at the focus is tested in simulations by combining three numerical algorithms for linear and nonlinear field modeling and aberration correction. The algorithms are based on the combination of the Rayleigh integral, a linear pseudo-spectral time domain Kelvin-Voigt model, and nonlinear Westervelt model to account for the effects of inhomogeneities, aberrations, reflections, absorption, nonlinearity, and shear waves in the skull. It is shown that the proposed array can generate nonlinear waveforms with shock amplitudes >60 MPa at the focus deep inside the brain without exceeding the existing technical limitation on the intensity of 40 W/cm at the array elements. Such shock amplitudes are sufficient for mechanical ablation of brain tissues using the boiling histotripsy approach and implementation of other shock-based therapies.
目前,用于深部脑结构热损伤的半球形多元素高强度聚焦超声相控阵已在临床上使用。已经发现了某些过热非靶向组织和颅骨的副作用。在这里,提出了一种减轻这些影响的方法。提出了一种特定的设计,即用随机分布的等面积多边形元素填充的全填充 256 元 1MHz 球形段(F 数,F = 1)相控阵。通过结合用于线性和非线性场建模和像差校正的三种数值算法在模拟中测试了该阵列在焦点处产生高振幅冲击波的能力。该算法基于瑞利积分、线性伪谱时域 Kelvin-Voigt 模型和非线性 Westervelt 模型的组合,以考虑颅骨中的不均匀性、像差、反射、吸收、非线性和剪切波的影响。结果表明,所提出的阵列可以在大脑深处的焦点处产生超过 60MPa 的非线性波形,而不会超过阵列元件处 40W/cm 的现有技术强度限制。这种冲击波幅度足以使用沸腾组织消融法消融脑组织,并实施其他基于冲击波的治疗。