IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Mar;71(3):341-353. doi: 10.1109/TUFFC.2024.3355390. Epub 2024 Feb 27.
High-intensity focused ultrasound (HIFU) applications for thermal or mechanical ablation of renal tumors often encounter challenges due to significant beam aberration and refraction caused by oblique beam incidence, inhomogeneous tissue layers, and presence of gas and bones within the beam. These losses can be significantly mitigated through sonication geometry planning, patient positioning, and aberration correction using multielement phased arrays. Here, a sonication planning algorithm is introduced, which uses the simulations to select the optimal transducer position and evaluate the effect of aberrations and acoustic field quality at the target region after aberration correction. Optimization of transducer positioning is implemented using a graphical user interface (GUI) to visualize a segmented 3-D computed tomography (CT)-based acoustic model of the body and to select sonication geometry through a combination of manual and automated approaches. An HIFU array (1.5 MHz, 256 elements) and three renal cell carcinoma (RCC) cases with different tumor locations and patient body habitus were considered. After array positioning, the correction of aberrations was performed using a combination of backpropagation from the focus with an ordinary least squares (OLS) optimization of phases at the array elements. The forward propagation was simulated using a combination of the Rayleigh integral and k-space pseudospectral method (k-Wave toolbox). After correction, simulated HIFU fields showed tight focusing and up to threefold higher maximum pressure within the target region. The addition of OLS optimization to the aberration correction method yielded up to 30% higher maximum pressure compared to the conventional backpropagation and up to 250% higher maximum pressure compared to the ray-tracing method, particularly in strongly distorted cases.
高强度聚焦超声(HIFU)在用于热消融或机械消融肾肿瘤时,由于斜入射光束、不均匀的组织层以及光束内存在气体和骨骼导致的显著光束像差和折射,经常会遇到挑战。通过超声几何规划、患者定位以及使用多阵元相控阵进行像差校正,可以显著减轻这些损失。这里引入了一种超声规划算法,该算法使用模拟来选择最佳换能器位置,并评估像差校正后目标区域的声场质量和像差的影响。通过图形用户界面(GUI)来实现换能器定位的优化,该界面用于可视化基于分段的 3D 计算机断层扫描(CT)的体声学模型,并通过手动和自动方法的组合选择超声几何形状。考虑了一个 HIFU 阵列(1.5MHz,256 个单元)和三个具有不同肿瘤位置和患者体型的肾细胞癌(RCC)病例。在阵列定位之后,使用从焦点反向传播与在阵元处的普通最小二乘法(OLS)相位优化的组合来进行像差校正。正向传播使用瑞利积分和 k 空间伪谱方法(k-Wave 工具箱)的组合进行模拟。校正后,模拟的 HIFU 场显示出紧密聚焦,并且在目标区域内的最大压力提高了三倍。与传统的反向传播相比,将 OLS 优化添加到像差校正方法中,最大压力提高了 30%,与射线追踪方法相比,最大压力提高了 250%,特别是在严重失真的情况下。