Suksmono Andriyan Bayu, Minato Yuichiro
School of Electrical Engineering and Informatics, Institut Teknologi Bandung, Jl. Ganesha No.10, Bandung, Indonesia.
MDR Inc., Hongo 2-40-14-3F, Bunkyo-ku, Tokyo, Japan.
Sci Rep. 2019 Oct 7;9(1):14380. doi: 10.1038/s41598-019-50473-w.
Finding a Hadamard matrix (H-matrix) among the set of all binary matrices of corresponding order is a hard problem, which potentially can be solved by quantum computing. We propose a method to formulate the Hamiltonian of finding H-matrix problem and address its implementation limitation on existing quantum annealing machine (QAM) that allows up to quadratic terms, whereas the problem naturally introduces higher order ones. For an M-order H-matrix, such a limitation increases the number of variables from M to (M + M - M)/2, which makes the formulation of the Hamiltonian too exhaustive to do by hand. We use symbolic computing techniques to manage this problem. Three related cases are discussed: (1) finding N < M orthogonal binary vectors, (2) finding M-orthogonal binary vectors, which is equivalent to finding a H-matrix, and (3) finding N-deleted vectors of an M-order H-matrix. Solutions of the problems by a 2-body simulated annealing software and by an actual quantum annealing hardware are also discussed.
在相应阶数的所有二进制矩阵集合中找到一个哈达玛矩阵(H矩阵)是一个难题,它有可能通过量子计算来解决。我们提出了一种方法来构建寻找H矩阵问题的哈密顿量,并解决其在现有量子退火机(QAM)上的实现限制,该量子退火机允许最多二次项,而该问题自然会引入高阶项。对于一个M阶H矩阵,这样的限制将变量数量从M增加到(M + M - M)/2,这使得哈密顿量的构建过于繁琐而无法手动完成。我们使用符号计算技术来处理这个问题。讨论了三个相关案例:(1)找到N < M个正交二进制向量,(2)找到M个正交二进制向量,这等同于找到一个H矩阵,以及(3)找到一个M阶H矩阵的N个删除向量。还讨论了通过两体模拟退火软件和实际量子退火硬件解决这些问题的方法。