Suppr超能文献

用于布尔张量网络的量子退火算法。

Quantum annealing algorithms for Boolean tensor networks.

作者信息

Pelofske Elijah, Hahn Georg, O'Malley Daniel, Djidjev Hristo N, Alexandrov Boian S

机构信息

Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.

Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.

出版信息

Sci Rep. 2022 May 20;12(1):8539. doi: 10.1038/s41598-022-12611-9.

Abstract

Quantum annealers manufactured by D-Wave Systems, Inc., are computational devices capable of finding high-quality heuristic solutions of NP-hard problems. In this contribution, we explore the potential and effectiveness of such quantum annealers for computing Boolean tensor networks. Tensors offer a natural way to model high-dimensional data commonplace in many scientific fields, and representing a binary tensor as a Boolean tensor network is the task of expressing a tensor containing categorical (i.e., [Formula: see text]) values as a product of low dimensional binary tensors. A Boolean tensor network is computed by Boolean tensor decomposition, and it is usually not exact. The aim of such decomposition is to minimize the given distance measure between the high-dimensional input tensor and the product of lower-dimensional (usually three-dimensional) tensors and matrices representing the tensor network. In this paper, we introduce and analyze three general algorithms for Boolean tensor networks: Tucker, Tensor Train, and Hierarchical Tucker networks. The computation of a Boolean tensor network is reduced to a sequence of Boolean matrix factorizations, which we show can be expressed as a quadratic unconstrained binary optimization problem suitable for solving on a quantum annealer. By using a novel method we introduce called parallel quantum annealing, we demonstrate that Boolean tensor's with up to millions of elements can be decomposed efficiently using a DWave 2000Q quantum annealer.

摘要

由D-Wave Systems公司制造的量子退火器是一种计算设备,能够找到NP难问题的高质量启发式解决方案。在本论文中,我们探索了此类量子退火器用于计算布尔张量网络的潜力和有效性。张量提供了一种自然的方式来对许多科学领域中常见的高维数据进行建模,而将二元张量表示为布尔张量网络就是将一个包含分类(即[公式:见正文])值的张量表示为低维二元张量乘积的任务。布尔张量网络通过布尔张量分解来计算,并且通常不是精确的。这种分解的目的是最小化高维输入张量与表示张量网络的低维(通常是三维)张量和矩阵的乘积之间给定的距离度量。在本文中,我们介绍并分析了用于布尔张量网络的三种通用算法:塔克算法、张量列车算法和分层塔克网络算法。布尔张量网络的计算被简化为一系列布尔矩阵分解,我们证明这可以表示为一个适合在量子退火器上求解的二次无约束二元优化问题。通过使用我们引入的一种称为并行量子退火的新方法,我们证明了使用D-Wave 2000Q量子退火器可以有效地分解包含多达数百万个元素的布尔张量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7bd1/9123033/4a12b5cd2082/41598_2022_12611_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验