Breton Solène, Jouhet Juliette, Guyet Ulysse, Gros Valérie, Pittera Justine, Demory David, Partensky Frédéric, Doré Hugo, Ratin Morgane, Maréchal Eric, Nguyen Ngoc An, Garczarek Laurence, Six Christophe
Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7144 Adaptation et Diversité en Milieu Marin (AD2M), Ecology of Marine Plankton (ECOMAP) Team, Station Biologique de Roscoff (SBR), 29680, Roscoff, France.
Laboratoire de Physiologie Cellulaire et Végétale, Unité mixe de recherche 5168 CNRS, CEA, INRA, Université Grenoble Alpes, IRIG, CEA Grenoble, 17, rue des Martyrs, 38000, Grenoble, France.
New Phytol. 2020 Mar;225(6):2396-2410. doi: 10.1111/nph.16239. Epub 2019 Nov 11.
The wide latitudinal distribution of marine Synechococcus cyanobacteria partly relies on the differentiation of lineages adapted to distinct thermal environments. Membranes are highly thermosensitive cell components, and the ability to modulate their fluidity can be critical for the fitness of an ecotype in a particular thermal niche. We compared the thermophysiology of Synechococcus strains representative of major temperature ecotypes in the field. We measured growth, photosynthetic capacities and membrane lipidome variations. We carried out a metagenomic analysis of stations of the Tara Oceans expedition to describe the latitudinal distribution of the lipid desaturase genes in the oceans. All strains maintained efficient photosynthetic capacities over their different temperature growth ranges. Subpolar and cold temperate strains showed enhanced capacities for lipid monodesaturation at low temperature thanks to an additional, poorly regiospecific Δ9-desaturase. By contrast, tropical and warm temperate strains displayed moderate monodesaturation capacities but high proportions of double unsaturations in response to cold, thanks to regiospecific Δ12-desaturases. The desaturase genes displayed specific distributions directly related to latitudinal variations in ocean surface temperature. This study highlights the critical importance of membrane fluidity modulation by desaturases in the adaptive strategies of Synechococcus cyanobacteria during the colonization of novel thermal niches.
海洋蓝藻聚球藻广泛的纬度分布部分依赖于适应不同热环境的谱系分化。膜是对温度高度敏感的细胞成分,调节其流动性的能力对于生态型在特定热生态位中的适应性可能至关重要。我们比较了代表野外主要温度生态型的聚球藻菌株的热生理学。我们测量了生长、光合能力和膜脂质组变化。我们对塔拉海洋探险考察站进行了宏基因组分析,以描述海洋中脂质去饱和酶基因的纬度分布。所有菌株在其不同的温度生长范围内都保持了高效的光合能力。亚极地和寒温带菌株由于额外的、区域特异性较差的Δ9-去饱和酶,在低温下表现出增强的脂质单不饱和能力。相比之下,热带和暖温带菌株响应寒冷时表现出适度的单不饱和能力,但双不饱和比例较高,这得益于区域特异性的Δ12-去饱和酶。去饱和酶基因呈现出与海洋表面温度纬度变化直接相关的特定分布。这项研究突出了去饱和酶调节膜流动性在聚球藻蓝藻定殖新热生态位过程中的适应性策略中的关键重要性。