1] University Pierre and Marie Curie (Paris 06), UMR 7144 Adaptation and Diversity in Marine Environments, Marine Phototrophic Procaryotes (MaPP) Team, Station Biologique de Roscoff, Place Georges Teissier, CS 90074, Roscoff cedex, France [2] Centre National de la Recherche Scientifique, UMR 7144 Adaptation and Diversity in Marine Environments, Oceanic Plankton Group, Station Biologique de Roscoff, Place Georges Teissier, CS 90074, Roscoff cedex, France.
University of Caen-Basse Normandie et Centre National de la Recherche Scientifique, Institut d'Ecologie et d'Environnement, FRE 3484 Biologie des Mollusques Marins et des Ecosystèmes associés, Caen, France.
ISME J. 2014 Jun;8(6):1221-36. doi: 10.1038/ismej.2013.228. Epub 2014 Jan 9.
Marine Synechococcus cyanobacteria constitute a monophyletic group that displays a wide latitudinal distribution, ranging from the equator to the polar fronts. Whether these organisms are all physiologically adapted to stand a large temperature gradient or stenotherms with narrow growth temperature ranges has so far remained unexplored. We submitted a panel of six strains, isolated along a gradient of latitude in the North Atlantic Ocean, to long- and short-term variations of temperature. Upon a downward shift of temperature, the strains showed strikingly distinct resistance, seemingly related to their latitude of isolation, with tropical strains collapsing while northern strains were capable of growing. This behaviour was associated to differential photosynthetic performances. In the tropical strains, the rapid photosystem II inactivation and the decrease of the antioxydant β-carotene relative to chl a suggested a strong induction of oxidative stress. These different responses were related to the thermal preferenda of the strains. The northern strains could grow at 10 °C while the other strains preferred higher temperatures. In addition, we pointed out a correspondence between strain isolation temperature and phylogeny. In particular, clades I and IV laboratory strains were all collected in the coldest waters of the distribution area of marine Synechococus. We, however, show that clade I Synechococcus exhibit different levels of adaptation, which apparently reflect their location on the latitudinal temperature gradient. This study reveals the existence of lineages of marine Synechococcus physiologically specialised in different thermal niches, therefore suggesting the existence of temperature ecotypes within the marine Synechococcus radiation.
海洋聚球藻蓝细菌构成一个单系群,其分布范围广泛,从赤道到极锋。这些生物是否都能适应较大的温度梯度,还是只能在狭窄的生长温度范围内生存,目前仍未得到探索。我们选取了一组沿着北大西洋纬度梯度分离的 6 个菌株,对其进行了长期和短期的温度变化实验。在温度下降时,这些菌株表现出明显不同的抗性,这似乎与它们的分离纬度有关,热带菌株崩溃,而北方菌株则能够生长。这种行为与光合作用性能的差异有关。在热带菌株中,快速的光系统 II 失活和抗氧化剂 β-胡萝卜素相对于 chl a 的减少表明存在强烈的氧化应激诱导。这些不同的反应与菌株的热偏好有关。北方菌株可以在 10°C 下生长,而其他菌株则更喜欢较高的温度。此外,我们还指出了菌株分离温度与系统发育之间的对应关系。特别是,I 组和 IV 组的实验室菌株均采集于海洋聚球藻分布区最寒冷的水域。然而,我们发现 I 组聚球藻表现出不同程度的适应性,这显然反映了它们在纬度温度梯度上的位置。这项研究揭示了海洋聚球藻存在专门适应不同热生境的谱系,因此表明海洋聚球藻辐射中有温度生态型的存在。