Suppr超能文献

神经嵴发育:来自斑马鱼的见解。

Neural crest development: insights from the zebrafish.

机构信息

Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois.

Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois.

出版信息

Dev Dyn. 2020 Jan;249(1):88-111. doi: 10.1002/dvdy.122. Epub 2019 Oct 22.

Abstract

Our understanding of the neural crest, a key vertebrate innovation, is built upon studies of multiple model organisms. Early research on neural crest cells (NCCs) was dominated by analyses of accessible amphibian and avian embryos, with mouse genetics providing complementary insights in more recent years. The zebrafish model is a relative newcomer to the field, yet it offers unparalleled advantages for the study of NCCs. Specifically, zebrafish provide powerful genetic and transgenic tools, coupled with rapidly developing transparent embryos that are ideal for high-resolution real-time imaging of the dynamic process of neural crest development. While the broad principles of neural crest development are largely conserved across vertebrate species, there are critical differences in anatomy, morphogenesis, and genetics that must be considered before information from one model is extrapolated to another. Here, our goal is to provide the reader with a helpful primer specific to neural crest development in the zebrafish model. We focus largely on the earliest events-specification, delamination, and migration-discussing what is known about zebrafish NCC development and how it differs from NCC development in non-teleost species, as well as highlighting current gaps in knowledge.

摘要

我们对神经嵴(脊椎动物的关键创新)的理解是建立在对多种模式生物的研究基础上的。早期对神经嵴细胞(NCCs)的研究主要集中在可研究的两栖动物和鸟类胚胎上,近年来,小鼠遗传学提供了补充性的见解。斑马鱼模型是该领域的后来者,但它为 NCCs 的研究提供了无与伦比的优势。具体来说,斑马鱼提供了强大的遗传和转基因工具,再加上正在快速发育的透明胚胎,非常适合对神经嵴发育的动态过程进行高分辨率实时成像。虽然神经嵴发育的广泛原则在脊椎动物物种中基本保持一致,但在将一个模型的信息推断到另一个模型之前,必须考虑到解剖结构、形态发生和遗传方面的关键差异。在这里,我们的目标是为读者提供有关斑马鱼模型中神经嵴发育的有用入门知识。我们主要关注最早的事件——特化、分层和迁移——讨论了已知的斑马鱼 NCC 发育情况,以及它与非硬骨鱼物种的 NCC 发育有何不同,并强调了当前知识上的差距。

相似文献

1
Neural crest development: insights from the zebrafish.
Dev Dyn. 2020 Jan;249(1):88-111. doi: 10.1002/dvdy.122. Epub 2019 Oct 22.
2
Prickle1 is required for EMT and migration of zebrafish cranial neural crest.
Dev Biol. 2019 Apr 1;448(1):16-35. doi: 10.1016/j.ydbio.2019.01.018. Epub 2019 Feb 2.
3
Characterization of cultured multipotent zebrafish neural crest cells.
Exp Biol Med (Maywood). 2014 Feb;239(2):159-68. doi: 10.1177/1535370213513997. Epub 2013 Dec 10.
4
Eif3ba regulates cranial neural crest development by modulating p53 in zebrafish.
Dev Biol. 2013 Sep 1;381(1):83-96. doi: 10.1016/j.ydbio.2013.06.009. Epub 2013 Jun 17.
6
Cdon promotes neural crest migration by regulating N-cadherin localization.
Dev Biol. 2015 Nov 15;407(2):289-99. doi: 10.1016/j.ydbio.2015.07.025. Epub 2015 Aug 6.
10
Rho-kinase and myosin II affect dynamic neural crest cell behaviors during epithelial to mesenchymal transition in vivo.
Dev Biol. 2008 Dec 15;324(2):236-44. doi: 10.1016/j.ydbio.2008.09.013. Epub 2008 Sep 24.

引用本文的文献

1
Going with the Flow: Sensorimotor Integration Along the Zebrafish GI Tract.
Cells. 2025 Jul 30;14(15):1170. doi: 10.3390/cells14151170.
2
Her9 is required for the migration, differentiation, and survival of neural crest cells.
bioRxiv. 2025 Jul 22:2025.07.18.665589. doi: 10.1101/2025.07.18.665589.
3
Exome Sequencing Reveals the Genetic Architecture of Non-syndromic Orofacial Clefts and Identifies BOC as a Novel Causal Gene.
Adv Sci (Weinh). 2025 Aug;12(32):e12073. doi: 10.1002/advs.202412073. Epub 2025 Jun 4.
4
Melanoma innervation, noradrenaline and cancer progression in zebrafish xenograft model.
Cell Death Discov. 2025 May 31;11(1):260. doi: 10.1038/s41420-025-02523-8.
5
Development of the zebrafish anterior lateral line system is influenced by underlying cranial neural crest.
Dev Biol. 2025 Sep;525:102-121. doi: 10.1016/j.ydbio.2025.05.025. Epub 2025 May 29.
6
Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications.
Front Cell Dev Biol. 2025 Jan 6;12:1457506. doi: 10.3389/fcell.2024.1457506. eCollection 2024.
7
9
scRNA-seq reveals the diversity of the developing cardiac cell lineage and molecular players in heart rhythm regulation.
iScience. 2024 May 22;27(6):110083. doi: 10.1016/j.isci.2024.110083. eCollection 2024 Jun 21.
10
The Hippo signalling pathway in bone homeostasis: Under the regulation of mechanics and aging.
Cell Prolif. 2024 Oct;57(10):e13652. doi: 10.1111/cpr.13652. Epub 2024 May 3.

本文引用的文献

1
Spatiotemporal structure of cell fate decisions in murine neural crest.
Science. 2019 Jun 7;364(6444). doi: 10.1126/science.aas9536.
2
Posterior axis formation requires Dlx5/Dlx6 expression at the neural plate border.
PLoS One. 2019 Mar 19;14(3):e0214063. doi: 10.1371/journal.pone.0214063. eCollection 2019.
3
Prickle1 is required for EMT and migration of zebrafish cranial neural crest.
Dev Biol. 2019 Apr 1;448(1):16-35. doi: 10.1016/j.ydbio.2019.01.018. Epub 2019 Feb 2.
5
Modeling craniofacial development reveals spatiotemporal constraints on robust patterning of the mandibular arch.
PLoS Comput Biol. 2018 Nov 27;14(11):e1006569. doi: 10.1371/journal.pcbi.1006569. eCollection 2018 Nov.
6
Iridophores as a source of robustness in zebrafish stripes and variability in Danio patterns.
Nat Commun. 2018 Aug 13;9(1):3231. doi: 10.1038/s41467-018-05629-z.
7
Migration and diversification of the vagal neural crest.
Dev Biol. 2018 Dec 1;444 Suppl 1(Suppl 1):S98-S109. doi: 10.1016/j.ydbio.2018.07.004. Epub 2018 Jul 5.
8
Requirement of zebrafish pcdh10a and pcdh10b in melanocyte precursor migration.
Dev Biol. 2018 Dec 1;444 Suppl 1(Suppl 1):S274-S286. doi: 10.1016/j.ydbio.2018.03.022. Epub 2018 Mar 29.
10
Retinoic acid temporally orchestrates colonization of the gut by vagal neural crest cells.
Dev Biol. 2018 Jan 1;433(1):17-32. doi: 10.1016/j.ydbio.2017.10.021. Epub 2017 Nov 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验