Suppr超能文献

获取完整膜蛋白的蛋白质缔合能景观。

Obtaining Protein Association Energy Landscape for Integral Membrane Proteins.

机构信息

Department of Biomedical and Chemical Engineering , Syracuse University , 343 Link Hall , Syracuse , New York 13244 , United States.

出版信息

J Chem Theory Comput. 2019 Nov 12;15(11):6444-6455. doi: 10.1021/acs.jctc.9b00626. Epub 2019 Oct 23.

Abstract

Integral membrane proteins are ubiquitous in biological cellular and subcellular membranes. Despite their significance to cell function, isolation of membrane proteins from their hydrophobic lipid environment and further characterization remains a challenge. To obtain insights into membrane proteins, computational approaches such as docking or self-assembly simulations have been used; however, the promise of these approaches has been limited due to the computational cost. Here we present a new approach called Protein AssociatioN Energy Landscape (PANEL) that provides an extensive and converged data set for all possible conformations of membrane protein associations using a combination of stochastic sampling and equilibration simulations. The PANEL method samples the rotational space around both interacting proteins to obtain the comprehensive interaction energy landscape. We demonstrate the versatility of the PANEL method using two distinct applications: (a) dimerization of claudin-5 tight junction proteins in phospholipid bilayer membrane and (b) dimer and trimer formation of the Outer membrane protein F (OmpF) in the lipopolysaccharide-rich bacterial outer membrane. Both applications required only a fraction of simulation cost compared to self-assembly simulations. The method is robust as it can capture changes in protein-protein conformations caused by point mutations. Moreover, the method is versatile and independent of the molecular resolution (atomistic or coarse grain) or the choice of force field employed to compute the pair-interaction energies. The PANEL method is implemented in easy-to-use scripts that are available for download for general use by the scientific community to characterize any pair of interacting integral membrane proteins.

摘要

整合膜蛋白在生物细胞和亚细胞膜中普遍存在。尽管它们对细胞功能很重要,但从疏水环境中分离膜蛋白并进一步进行特征描述仍然是一个挑战。为了深入了解膜蛋白,已经使用了计算方法,如对接或自组装模拟;然而,由于计算成本,这些方法的前景受到了限制。在这里,我们提出了一种新的方法,称为蛋白质相互作用能量景观(PANEL),该方法使用随机采样和平衡模拟的组合,为膜蛋白相互作用的所有可能构象提供了广泛而收敛的数据。PANEL 方法在相互作用的两个蛋白质周围的旋转空间中进行采样,以获得全面的相互作用能量景观。我们通过两个不同的应用程序展示了 PANEL 方法的多功能性:(a)紧密连接蛋白 Claudin-5 在磷脂双层膜中的二聚化,(b)脂多糖丰富的细菌外膜中外膜蛋白 F(OmpF)的二聚体和三聚体形成。与自组装模拟相比,这两种应用程序只需要一小部分模拟成本。该方法具有很强的稳健性,因为它可以捕获由点突变引起的蛋白质-蛋白质构象变化。此外,该方法具有通用性,不依赖于用于计算对相互作用能的分子分辨率(原子或粗粒)或力场的选择。PANEL 方法以易于使用的脚本实现,可供科学界下载,用于表征任何一对相互作用的整合膜蛋白。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验