Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan.
Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan; Japan Society for the Promotion of Science (JSPS), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan.
Biochim Biophys Acta Biomembr. 2020 Feb 1;1862(2):183068. doi: 10.1016/j.bbamem.2019.183068. Epub 2019 Oct 5.
Human monocarboxylate transporters (hMCTs) are expressed in many tissues and mediate the transport of various substrates across the plasma membrane. Among hMCTs, hMCT1-4 cotransport H with monocarboxylates such as pyruvate and l-lactate, implying that these proteins recognize both substrate and H. However, the mechanism of translocation, and particularly that of hMCT1 pH-dependent transport, remains largely unknown. This study aimed at identifying residues involved in the pH dependence of hMCT1 using a combination of amino acid-modifying reagents, site-directed mutagenesis in a Xenopus laevis oocyte expression system, and homology modeling. We showed that diethyl pyrocarbonate (DEPC), phenylglyoxal (PGO), and 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid disodium salt (DIDS), which react with histidine, arginine, and lysine residues respectively, all inhibited hMCT1 activity. Since DEPC, PGO, and DIDS are membrane impermeable reagents, we mutated to other residues individual histidine, arginine, and lysine residues located within the extracellular regions of hMCT1. Analyses of these mutants demonstrated that except for K38, the extracellular basic residues of hMCT1 were not involved in its transport activity and pH dependence. Moreover, analyses of various mutants in which K38 was substituted for another residue and of an hMCT1 homology model focusing on the location of K38 in the three-dimensional structure delineated the mechanism of hMCT1 pH dependence. Collectively, our data indicate that K38 plays an essential role in hMCT1 transport activity. We would like to propose a mechanism whereby K38 is positioned within a hydrophobic and narrow cavity that is part of the transport pathway, and regulates pH-dependent gating of hMCT1.
人单羧酸转运蛋白(hMCTs)在许多组织中表达,并介导各种基质穿过质膜的运输。在 hMCTs 中,hMCT1-4 与丙酮酸和 l-乳酸等单羧酸共同转运 H+,这意味着这些蛋白质既识别底物又识别 H+。然而,转运的机制,特别是 hMCT1 的 pH 依赖性转运的机制,在很大程度上仍然未知。本研究旨在使用氨基酸修饰试剂、在非洲爪蟾卵母细胞表达系统中的定点突变以及同源建模相结合的方法,鉴定 hMCT1 的 pH 依赖性所涉及的残基。我们表明,二乙基焦碳酸酯(DEPC)、苯乙二醛(PGO)和 4,4'-二异硫氰酸基-2,2'-联苯二磺酸二钠盐(DIDS),分别与组氨酸、精氨酸和赖氨酸残基反应,都抑制了 hMCT1 的活性。由于 DEPC、PGO 和 DIDS 是膜不可渗透的试剂,我们将单个位于 hMCT1 细胞外区域的组氨酸、精氨酸和赖氨酸残基突变为其他残基。对这些突变体的分析表明,除了 K38 之外,hMCT1 的细胞外碱性残基不参与其转运活性和 pH 依赖性。此外,对 K38 被另一个残基取代的各种突变体的分析以及对 hMCT1 同源模型的分析,重点是 K38 在三维结构中的位置,阐明了 hMCT1 pH 依赖性的机制。总之,我们的数据表明 K38 在 hMCT1 的转运活性中起着至关重要的作用。我们提出一种机制,其中 K38 位于转运途径的一部分的疏水和狭窄腔中,并调节 hMCT1 的 pH 依赖性门控。