Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
J Chem Phys. 2019 Oct 7;151(13):135101. doi: 10.1063/1.5122304.
Microtubules (MTs) experience an effect called "catastrophe," which is the transition from the MT growth to a sudden dramatic shrinkage in length. The straight guanosine triphosphate (GTP)-tubulin cap at the filament tip and the intrinsic curvature of guanosine diphosphate (GDP)-tubulins are known to be the key thermodynamic factors that determine MT catastrophe, while the hydrolysis of this GTP-cap acts as the kinetic control of the process. Although several theoretical models have been developed, assuming the catastrophe occurs when the GTP-cap shrinks to a minimal stabilizing size, the structural effect of the GTP-cap and GDP-curvature is not explicitly included; thus, their influence on catastrophe kinetics remains less understood. To investigate this structural effect, we apply a single-protofilament model with one GTP-cap while assuming a random hydrolysis mechanism and take the occurrence of a crack in the lateral bonds between neighboring protofilaments as the onset of the catastrophe. Therein, we find the effective potential of the tip along the peel-off direction and formulate the catastrophe kinetics as a mean first-passage time problem, subject to thermal fluctuations. We consider cases with and without a compressive force on the MT tip, both of which give a quadratic effective potential, making MT catastrophe an Ornstein-Uhlenbeck process in our formalism. In the free-standing case, the mean catastrophe time has a sensitive tubulin-concentration dependence, similar to a double-exponential function, and agrees well with the experiment. For a compressed MT, we find a modified exponential function of force that shortens the catastrophe time.
微管(MTs)经历了一种称为“灾难”的效应,即从 MT 生长到长度突然急剧收缩的转变。丝状尖端的直鸟嘌呤三磷酸(GTP)-微管和固有鸟嘌呤二磷酸(GDP)-微管的曲率被认为是决定 MT 灾难的关键热力学因素,而 GTP-帽的水解作用作为该过程的动力学控制。尽管已经开发了几种理论模型,但假设灾难发生在 GTP-帽收缩到最小稳定尺寸时,GTP-帽和 GDP-曲率的结构效应并未明确包含;因此,它们对灾难动力学的影响仍不太了解。为了研究这种结构效应,我们应用了一个带有一个 GTP-帽的单原纤维模型,同时假设水解机制是随机的,并将相邻原纤维之间的横向键的断裂作为灾难的开始。在那里,我们找到了沿剥离方向尖端的有效势,并将灾难动力学表述为一个受热涨落影响的平均首次通过时间问题。我们考虑了 MT 尖端有和没有压缩力的情况,这两种情况都给出了二次有效势,使 MT 灾难成为我们形式主义中的一个 Ornstein-Uhlenbeck 过程。在自由站立的情况下,平均灾难时间对微管蛋白浓度有敏感的依赖性,类似于双指数函数,与实验结果吻合良好。对于压缩的 MT,我们发现力的修正指数函数缩短了灾难时间。