Suppr超能文献

帽、裂缝和固有曲率对微管崩溃动力学的结构影响。

Structural effects of cap, crack, and intrinsic curvature on the microtubule catastrophe kinetics.

机构信息

Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom.

出版信息

J Chem Phys. 2019 Oct 7;151(13):135101. doi: 10.1063/1.5122304.

Abstract

Microtubules (MTs) experience an effect called "catastrophe," which is the transition from the MT growth to a sudden dramatic shrinkage in length. The straight guanosine triphosphate (GTP)-tubulin cap at the filament tip and the intrinsic curvature of guanosine diphosphate (GDP)-tubulins are known to be the key thermodynamic factors that determine MT catastrophe, while the hydrolysis of this GTP-cap acts as the kinetic control of the process. Although several theoretical models have been developed, assuming the catastrophe occurs when the GTP-cap shrinks to a minimal stabilizing size, the structural effect of the GTP-cap and GDP-curvature is not explicitly included; thus, their influence on catastrophe kinetics remains less understood. To investigate this structural effect, we apply a single-protofilament model with one GTP-cap while assuming a random hydrolysis mechanism and take the occurrence of a crack in the lateral bonds between neighboring protofilaments as the onset of the catastrophe. Therein, we find the effective potential of the tip along the peel-off direction and formulate the catastrophe kinetics as a mean first-passage time problem, subject to thermal fluctuations. We consider cases with and without a compressive force on the MT tip, both of which give a quadratic effective potential, making MT catastrophe an Ornstein-Uhlenbeck process in our formalism. In the free-standing case, the mean catastrophe time has a sensitive tubulin-concentration dependence, similar to a double-exponential function, and agrees well with the experiment. For a compressed MT, we find a modified exponential function of force that shortens the catastrophe time.

摘要

微管(MTs)经历了一种称为“灾难”的效应,即从 MT 生长到长度突然急剧收缩的转变。丝状尖端的直鸟嘌呤三磷酸(GTP)-微管和固有鸟嘌呤二磷酸(GDP)-微管的曲率被认为是决定 MT 灾难的关键热力学因素,而 GTP-帽的水解作用作为该过程的动力学控制。尽管已经开发了几种理论模型,但假设灾难发生在 GTP-帽收缩到最小稳定尺寸时,GTP-帽和 GDP-曲率的结构效应并未明确包含;因此,它们对灾难动力学的影响仍不太了解。为了研究这种结构效应,我们应用了一个带有一个 GTP-帽的单原纤维模型,同时假设水解机制是随机的,并将相邻原纤维之间的横向键的断裂作为灾难的开始。在那里,我们找到了沿剥离方向尖端的有效势,并将灾难动力学表述为一个受热涨落影响的平均首次通过时间问题。我们考虑了 MT 尖端有和没有压缩力的情况,这两种情况都给出了二次有效势,使 MT 灾难成为我们形式主义中的一个 Ornstein-Uhlenbeck 过程。在自由站立的情况下,平均灾难时间对微管蛋白浓度有敏感的依赖性,类似于双指数函数,与实验结果吻合良好。对于压缩的 MT,我们发现力的修正指数函数缩短了灾难时间。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验