ICES Western, London, Ontario, Canada
St Michael's Hospital, Toronto, Ontario, Canada.
BMJ Open. 2019 Oct 7;9(10):e030221. doi: 10.1136/bmjopen-2019-030221.
To validate case ascertainment algorithms for identifying individuals experiencing homelessness in health administrative databases between 2007 and 2014; and to estimate homelessness prevalence trends in Ontario, Canada, between 2007 and 2016.
A population-based retrospective validation study.
Ontario, Canada, from 2007 to 2014 (validation) and 2007 to 2016 (estimation).
Our reference standard was the known housing status of a longitudinal cohort of housed (n=137 200) and homeless or vulnerably housed (n=686) individuals. Two reference standard definitions of homelessness were adopted: the housing episode and the annual housing experience (any homelessness within a calendar year).
Sensitivity, specificity, positive and negative predictive values and positive likelihood ratios of 30 case ascertainment algorithms for detecting homelessness using up to eight health service databases.
Sensitivity estimates ranged from 10.8% to 28.9% (housing episode definition) and 18.5% to 35.6% (annual housing experience definition). Specificities exceeded 99% and positive likelihood ratios were high using both definitions. The most optimal algorithm estimates that 59 974 (95% CI 55 231 to 65 208) Ontarians (0.53% of the adult population) experienced homelessness in 2016, a 67.3% increase from 2007.
In Ontario, case ascertainment algorithms for identifying homelessness had low sensitivity but very high specificity and positive likelihood ratio. The use of health administrative databases may offer opportunities to track individuals experiencing homelessness over time and inform efforts to improve housing and health status in this vulnerable population.
验证 2007 年至 2014 年期间在健康管理数据库中识别无家可归者的病例确定算法;并估计加拿大安大略省 2007 年至 2016 年期间的无家可归者患病率趋势。
基于人群的回顾性验证研究。
加拿大安大略省,2007 年至 2014 年(验证)和 2007 年至 2016 年(估计)。
我们的参考标准是一个住房纵向队列的已知住房状况(n=137200)和无家可归或弱势住房(n=686)个体。采用了两种无家可归的参考标准定义:住房事件和年度住房经历(在日历年中任何无家可归)。
使用多达八个卫生服务数据库检测无家可归者的 30 种病例确定算法的敏感性、特异性、阳性和阴性预测值以及阳性似然比。
敏感性估计值在住房事件定义下为 10.8%至 28.9%,在年度住房经历定义下为 18.5%至 35.6%。特异性均超过 99%,两种定义的阳性似然比均较高。最优化算法估计,2016 年有 59974 名(95%置信区间 55231 至 65208)安大略人(成年人口的 0.53%)无家可归,比 2007 年增加了 67.3%。
在安大略省,用于识别无家可归者的病例确定算法敏感性较低,但特异性和阳性似然比非常高。使用健康管理数据库可能为跟踪随时间经历无家可归的个体提供机会,并为改善该弱势群体的住房和健康状况提供信息。