Suppr超能文献

拓扑扭结等离激元在磁畴边界上。

Topological kink plasmons on magnetic-domain boundaries.

机构信息

Nanoscale Science and Engineering Center, University of California, Berkeley, CA, 94706, USA.

Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL, 60439, USA.

出版信息

Nat Commun. 2019 Oct 8;10(1):4565. doi: 10.1038/s41467-019-12092-x.

Abstract

Two-dimensional topological materials bearing time reversal-breaking magnetic fields support protected one-way edge modes. Normally, these edge modes adhere to physical edges where material properties change abruptly. However, even in homogeneous materials, topology still permits a unique form of edge modes - kink modes - residing at the domain boundaries of magnetic fields within the materials. This scenario, despite being predicted in theory, has rarely been demonstrated experimentally. Here, we report our observation of topologically-protected high-frequency kink modes - kink magnetoplasmons (KMPs) - in a GaAs/AlGaAs two-dimensional electron gas (2DEG) system. These KMPs arise at a domain boundary projected from an externally-patterned magnetic field onto a uniform 2DEG. They propagate unidirectionally along the boundary, protected by a difference of gap Chern numbers ([Formula: see text]) in the two domains. They exhibit large tunability under an applied magnetic field or gate voltage, and clear signatures of nonreciprocity even under weak-coupling to evanescent photons.

摘要

承载时间反演破缺磁场的二维拓扑材料支持受保护的单向边缘模式。通常,这些边缘模式依附于材料属性急剧变化的物理边缘。然而,即使在均匀材料中,拓扑仍然允许一种独特形式的边缘模式——扭结模式——存在于材料内磁场的畴界处。尽管这一场景在理论上已有预测,但在实验中很少得到证实。在这里,我们报告了在 GaAs/AlGaAs 二维电子气(2DEG)系统中观察到的拓扑保护的高频扭结模式——扭结磁等离子体激元(KMP)。这些 KMP 出现在由外部图案化磁场投影到均匀 2DEG 上的畴界处。它们沿着边界单向传播,由两个畴中间隙陈数 ([Formula: see text]) 的差异保护。它们在施加磁场或栅极电压下表现出很大的可调谐性,并且即使在与消逝光子的弱耦合下也表现出明显的非互易性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43f8/6783483/8a479a488a35/41467_2019_12092_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验