Suppr超能文献

景观格局指标在预测源头集水区水质中的表现。

Performance of landscape composition metrics for predicting water quality in headwater catchments.

机构信息

Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Praha, Suchdol, 165 00, Czech Republic.

T. G. Masaryk Water Research Institute, Podbabska 30, 160 00, Prague 6, Czech Republic.

出版信息

Sci Rep. 2019 Oct 8;9(1):14405. doi: 10.1038/s41598-019-50895-6.

Abstract

Land use is a predominant threat to the ecological integrity of streams and rivers. Understanding land use-water quality interactions is essential for the development and prioritization of management strategies and, thus, the improvement of water quality. Weighting schemes for land use have recently been employed as methods to advance the predictive power of empirical models, however, their performance has seldom been explored for various water quality parameters. In this work, multiple landscape composition metrics were applied within headwater catchments of Central Europe to investigate how weighting land use with certain combinations of spatial and topographic variables, while implementing alternate distance measures and functions, can influence predictions of water quality. The predictive ability of metrics was evaluated for eleven water quality parameters using linear regression. Results indicate that stream proximity, measured with Euclidean distance, in combination with slope or log-transformed flow accumulation were dominant factors affecting the concentrations of pH, total phosphorus, nitrite and orthophosphate phosphorus, whereas the unweighted land use composition was the most effective predictor of calcium, electrical conductivity, nitrates and total suspended solids. Therefore, both metrics are recommended when examining land use-water quality relationships in small, submontane catchments and should be applied according to individual water quality parameter.

摘要

土地利用是对溪流和河流生态完整性的主要威胁。了解土地利用-水质相互作用对于制定和优先考虑管理策略至关重要,从而改善水质。最近,土地利用加权方案已被用作提高经验模型预测能力的方法,然而,对于各种水质参数,其性能很少被探索。在这项工作中,多种景观组成指标应用于中欧的源头流域,以研究在实施替代距离测量和函数的情况下,如何通过空间和地形变量的特定组合加权土地利用,从而影响水质预测。使用线性回归评估指标对十一个水质参数的预测能力。结果表明,使用欧几里得距离测量的溪流接近度与坡度或对数转换的流量累积相结合是影响 pH 值、总磷、亚硝酸盐和正磷酸盐浓度的主要因素,而未加权的土地利用组成是钙、电导率、硝酸盐和总悬浮固体的最有效预测因子。因此,在研究小的、次山区流域的土地利用-水质关系时,建议同时使用这两种指标,并根据个别水质参数进行应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/deba/6783472/25d0a5723927/41598_2019_50895_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验