Department of Metallurgical and Materials Engineering , Karamanoglu Mehmetbey University , 70100 Karaman , Turkey.
ACS Appl Mater Interfaces. 2019 Oct 30;11(43):39998-40005. doi: 10.1021/acsami.9b13876. Epub 2019 Oct 22.
Understanding the transport loss and the ways to improving optoelectronic properties of the charge transporting layers is critical to fabricate highly efficient, long-term stable, and hysteresis-free perovskite solar cells (PSCs). Herein, we report success in suppressing hysteresis and boosting the performance of operationally stable planar solar cells using a ruthenium (Ru) doped tin oxide (SnO) electron transport layer (ETL) and Zn-TFSI doped spiro-OMeTAD hole transport layer (HTL). Apparently, the incorporation of Ru drastically shifts the Fermi level of SnO ETL upward, which provides a facile route to tailor the ETL/perovskite band-offset to improve built-in electric fields of devices for improving and electron extraction simultaneously. Meanwhile, rapid injection of the photogenerated electrons from perovskite into ETL with reduced trap density is also observed when Ru doped SnO is employed as ETL. On the other hand, the conception of Zn-TFSI incorporation into HTL not only further boosts the photovoltaic performance but also prolongs the photostability of the devices. Consequently, a breakthrough efficiency of 22% (average 21.8%) with a of 24.6 mA cm, of 1.15 V, and FF of 0.78 has been obtained in planar-type PSCs with a loss in efficiency of only ∼3% at maximum power point tracking over 2000 h.
了解电荷传输层的输运损耗和改进光电性能的方法对于制备高效、长期稳定且无迟滞的钙钛矿太阳能电池(PSC)至关重要。在此,我们成功地使用掺钌(Ru)的氧化锡(SnO)电子传输层(ETL)和 Zn-TFSI 掺杂的螺噁嗪-OMeTAD 空穴传输层(HTL)抑制迟滞并提高了操作稳定的平面太阳能电池的性能。显然,Ru 的掺入极大地将 SnO ETL 的费米能级向上移动,这为调整 ETL/钙钛矿能带偏移以改善器件的内置电场并同时提高电子提取提供了简便的途径。同时,当 Ru 掺杂的 SnO 用作 ETL 时,还观察到光生电子从钙钛矿快速注入到具有降低的陷阱密度的 ETL 中。另一方面,将 Zn-TFSI 掺入 HTL 的概念不仅进一步提高了光伏性能,而且还延长了器件的光稳定性。因此,在平面型 PSCs 中获得了 22%的突破性效率(平均 21.8%),开路电压为 24.6 mA cm,填充因子为 0.78,在最大功率点跟踪下效率损失仅约为 3%,超过 2000 小时。