i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences , Suzhou , Jiangsu 215123 , China.
School of Physical Science and Technology , Shanghai Tech University , Shanghai 201210 , China.
ACS Appl Mater Interfaces. 2019 Nov 27;11(47):44196-44203. doi: 10.1021/acsami.9b14819. Epub 2019 Nov 18.
High power lithium-ion batteries require highly conductive electrodes. For an active electrode material that has limited electron conductivity, it is critical to build a carbon network that is not only highly conductive itself but also highly compatible with the electroactive material for efficient interfacial charge transfer. Herein, we design a multicomponent carbon network that is optimized for electrical coupling with the electroactive NbO nanorods for efficient electron injection. The self-support electrode is constructed by using 0D polypyrrole-derived (Ppy) carbon nanoparticles as glue to bind the NbO nanorods with 1D carbon nanotubes (CNTs) and 2D graphene nanosheets (GNSs). The 0D carbon nanoparticles also cross-link 1D CNTs with 2D GNSs, which can effectively prevent the GNSs from aggregation and form the 3D CNT/GNS network that provides continuous electronic and ionic pathways. This 3D NbO@C self-support electrode exhibits a high discharge capacity of 246.3 mA h g at 0.5 C and 100 mA h g at 20 C and excellent Coulombic efficiency of 99.98% at 20 C. Even increasing the mass loading to 7.1 mg cm, the NbO@C electrode can still reach a discharge capacity of 172.4 mA h g at 0.5 C after 100 cycles. A high power density of 1043 W kg can be achieved at an energy density of 104.3 W h kg based on the electrode weight, which is among the highest values demonstrated so far for NbO electrodes. The results pave the way toward practical applications of NbO anodes in high-power lithium-ion batteries.
高功率锂离子电池需要高导电性电极。对于电子电导率有限的活性电极材料,构建不仅本身具有高导电性,而且与电活性材料高度兼容的碳网络对于高效的界面电荷转移至关重要。在此,我们设计了一种多组分碳网络,该网络经过优化,可与 NbO 纳米棒实现电耦合,从而实现高效的电子注入。自支撑电极是通过使用 0D 聚吡咯衍生的(Ppy)碳纳米粒子作为胶黏剂来构建的,该胶黏剂将 NbO 纳米棒与 1D 碳纳米管(CNTs)和 2D 石墨烯纳米片(GNSs)结合在一起。0D 碳纳米粒子还将 1D CNTs 与 2D GNSs 交联,这可以有效地防止 GNSs 聚集,并形成 3D CNT/GNS 网络,为电子和离子提供连续的传输通道。这种 3D NbO@C 自支撑电极在 0.5 C 时具有 246.3 mA h g 的高放电容量,在 20 C 时具有 100 mA h g 的放电容量和 99.98%的出色库仑效率,在 20 C 时仍可达到 7.1 mg cm 的高质量负载。在电极重量的基础上,可实现 1043 W kg 的高功率密度,基于 104.3 W h kg 的能量密度,这是迄今为止 NbO 电极所展示的最高值之一。这些结果为 NbO 阳极在高功率锂离子电池中的实际应用铺平了道路。