文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

患者定制型寡核苷酸疗法治疗罕见遗传病。

Patient-Customized Oligonucleotide Therapy for a Rare Genetic Disease.

机构信息

From the Divisions of Genetics and Genomics (J.K., C.H., E.A.L., A.S., J.V., R.L.D., J.C., P.B.A., A.H.B., S.E.W., O.B., T.W.Y.), Newborn Medicine (P.B.A., P.E.G.), and Neuroradiology (P.E.G.), the Departments of Neurology (C.M.E.A., D.K.U., A. Poduri), Anesthesiology, Critical Care and Pain Medicine (L.C., C.B.B.), Physical and Occupational Therapy (A. Pasternak, E.R.B., K.A.P.), and Pharmacy (S.C., A. Patterson), the Institutional Centers for Clinical and Translational Research (A.K., B.B., L.W.), and the Manton Center for Orphan Disease Research (C.A.G., P.B.A., A.H.B.), Boston Children's Hospital (A.K., A.T., M.A., L.M.P., K.D., B.B., L.W., B.D.G., B.L.R., A.B.), the Department of Biomedical Informatics (J.K., P.J.P.), Harvard Medical School (J.K., C.M.E.A., E.A.L., L.C., B.D.G., B.L.R., P.B.A., A.H.B., P.E.G., D.K.U., S.E.W., P.J.P., A. Patterson, A.B., O.B., C.B.B., T.W.Y.), and the Gene Therapy Program (A.B.), Boston Children's and Dana-Farber Cancer and Blood Disorders Center (A.K., B.B., L.W.), Boston, Charles River Laboratories, Wilmington (L.E.B.), and Broad Institute of MIT and Harvard (E.A.L., O.B., T.W.Y.), Cambridge - all in Massachusetts; Charles River Laboratories, Montreal (J.D.); University of Colorado School of Medicine, Aurora (A.L.); Pendergast Consulting, Washington, DC (M.K.P.); Goldkind Consulting, Potomac, MD (S.F.G.); the Department of Neurology Feinberg School of Medicine, Northwestern University, Chicago (N.R.B., K.F., I.S., J.R.M.); the Department of Neurology, University of Rochester Medical Center, Rochester, NY (E.F.A.); Brain Hz Consulting, Del Mar, CA (C.R.); Tyndall Consulting, Wake Forest, NC (K.T.); and Brammer Bio, Alachua, FL (R.O.S.).

出版信息

N Engl J Med. 2019 Oct 24;381(17):1644-1652. doi: 10.1056/NEJMoa1813279. Epub 2019 Oct 9.


DOI:10.1056/NEJMoa1813279
PMID:31597037
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6961983/
Abstract

Genome sequencing is often pivotal in the diagnosis of rare diseases, but many of these conditions lack specific treatments. We describe how molecular diagnosis of a rare, fatal neurodegenerative condition led to the rational design, testing, and manufacture of milasen, a splice-modulating antisense oligonucleotide drug tailored to a particular patient. Proof-of-concept experiments in cell lines from the patient served as the basis for launching an "N-of-1" study of milasen within 1 year after first contact with the patient. There were no serious adverse events, and treatment was associated with objective reduction in seizures (determined by electroencephalography and parental reporting). This study offers a possible template for the rapid development of patient-customized treatments. (Funded by Mila's Miracle Foundation and others.).

摘要

基因组测序通常是罕见疾病诊断的关键,但许多此类病症缺乏特定的治疗方法。我们描述了如何通过对一种罕见的致命神经退行性疾病进行分子诊断,从而合理设计、测试和制造出 milasen,这是一种针对特定患者的剪接调节反义寡核苷酸药物。在与患者首次接触后的 1 年内,我们根据患者细胞系中的概念验证实验,启动了针对 milasen 的“N-of-1”研究。没有出现严重的不良事件,且治疗与癫痫发作的客观减少(通过脑电图和家长报告确定)相关。这项研究为快速开发针对患者的定制治疗方法提供了一种可能的模板。(由 Mila 的奇迹基金会和其他组织资助)。

相似文献

[1]
Patient-Customized Oligonucleotide Therapy for a Rare Genetic Disease.

N Engl J Med. 2019-10-9

[2]
N-of-1 drugs push biopharma frontiers.

Nat Rev Drug Discov. 2020-3

[3]
Preparing for Patient-Customized N-of-1 Antisense Oligonucleotide Therapy to Treat Rare Diseases.

Genes (Basel). 2024-6-21

[4]
A rare homozygous MFSD8 single-base-pair deletion and frameshift in the whole genome sequence of a Chinese Crested dog with neuronal ceroid lipofuscinosis.

BMC Vet Res. 2015-1-3

[5]
Profound infantile neuroretinal dysfunction in a heterozygote for the CLN3 genetic defect.

J Child Neurol. 2004-1

[6]
Development of tailored splice-switching oligonucleotides for progressive brain disorders in Europe: development, regulation, and implementation considerations.

RNA. 2023-4

[7]
A novel MFSD8 mutation in a Russian patient with neuronal ceroid lipofuscinosis type 7: a case report.

BMC Med Genet. 2018-8-25

[8]
Multimodal retinal imaging in -neuronal ceroid lipofuscinosis.

Ophthalmic Genet. 2019-12

[9]
Make or break for first splice-modulating agents.

Nat Rev Drug Discov. 2013-11

[10]
The novel neuronal ceroid lipofuscinosis gene MFSD8 encodes a putative lysosomal transporter.

Am J Hum Genet. 2007-7

引用本文的文献

[1]
Neuronal ceroid lipofuscinosis: underlying mechanisms and emerging therapeutic targets.

Nat Rev Neurol. 2025-9-4

[2]
Chemical Modifications in Nucleic Acid Therapeutics.

Methods Mol Biol. 2025

[3]
The RNA revolution in medicine: from gene regulation to clinical therapeutics.

Anim Cells Syst (Seoul). 2025-8-25

[4]
A baby benefits from personalized gene editing in the clinic.

Nature. 2025-8

[5]
Dravet syndrome: novel insights into -mediated epileptic neurodevelopmental disorders within the molecular diagnostic-therapeutic framework.

Front Neurosci. 2025-7-23

[6]
Trends and Commonalities of Approved and Late Clinical-Phase RNA Therapeutics.

Pharmaceutics. 2025-7-12

[7]
Tailored antisense oligonucleotides for ultrarare CNS diseases: An experience-based best practice framework for individual patient evaluation.

Mol Ther Nucleic Acids. 2025-7-1

[8]
Antisense oligonucleotide therapy for patients with Friedreich's ataxia carrying the c.165+5G>C splicing mutation.

Mol Ther Nucleic Acids. 2025-7-1

[9]
Antisense oligonucleotide therapies for monogenic disorders.

Med Genet. 2025-7-17

[10]
Functional Analysis of Complex Structural and Splice-Altering Variants in the Gene Towards the Personalized Antisense-Based Therapy for Mucopolysaccharidosis Type VI Patients.

Hum Mutat. 2025-1-10

本文引用的文献

[1]
Novel mutations in CLN6 cause late-infantile neuronal ceroid lipofuscinosis without visual impairment in two unrelated patients.

Mol Genet Metab. 2018-12-3

[2]
Longitudinal In Vivo Monitoring of the CNS Demonstrates the Efficacy of Gene Therapy in a Sheep Model of CLN5 Batten Disease.

Mol Ther. 2018-7-17

[3]
Dose-Dependent Lowering of Mutant Huntingtin Using Antisense Oligonucleotides in Huntington Disease Patients.

Nucleic Acid Ther. 2018-3-13

[4]
Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy.

N Engl J Med. 2018-2-15

[5]
Therapy for Spinal Muscular Atrophy.

N Engl J Med. 2018-2-1

[6]
Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy.

N Engl J Med. 2017-11-2

[7]
Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study.

Lancet. 2016-12-7

[8]
Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cln7.

Hum Mol Genet. 2016-2-15

[9]
Genetics of the neuronal ceroid lipofuscinoses (Batten disease).

Biochim Biophys Acta. 2015-10

[10]
Human NCL Neuropathology.

Biochim Biophys Acta. 2015-10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索