Suppr超能文献

海胆毒素 A 和蛇毒素 O 使用不同的机制来控制胆固醇从质膜向内质网的转移。

Ostreolysin A and anthrolysin O use different mechanisms to control movement of cholesterol from the plasma membrane to the endoplasmic reticulum.

机构信息

Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390.

Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas 75390

出版信息

J Biol Chem. 2019 Nov 15;294(46):17289-17300. doi: 10.1074/jbc.RA119.010393. Epub 2019 Oct 9.

Abstract

Recent studies using two cholesterol-binding bacterial toxin proteins, perfringolysin O (PFO) and domain 4 of anthrolysin O (ALOD4), have shown that cholesterol in the plasma membranes (PMs) of animal cells resides in three distinct pools. The first pool comprises mobile cholesterol, accessible to both PFO and ALOD4, that is rapidly transported to the endoplasmic reticulum (ER) to signal cholesterol excess and maintain cholesterol homeostasis. The second is a sphingomyelin (SM)-sequestered pool inaccessible to PFO and ALOD4 but that becomes accessible by treatment with SM-degrading sphingomyelinase (SMase). The third is an essential pool also inaccessible to PFO and ALOD4 that cannot be liberated by SMase treatment. The accessible cholesterol pool can be trapped on PMs of live cells by nonlytic ALOD4, blocking its transport to the ER. However, studies of the two other pools have been hampered by a lack of available tools. Here, we used ostreolysin A (OlyA), which specifically binds SM/cholesterol complexes in membranes, to study the SM-sequestered cholesterol pool. Binding of nonlytic OlyA to SM/cholesterol complexes in PMs of live cells depleted the accessible PM cholesterol pool detectable by ALOD4. Consequently, transport of accessible cholesterol from PM to ER ceased, thereby activating SREBP transcription factors and increasing cholesterol synthesis. Thus, OlyA and ALOD4 both control movement of PM cholesterol, but through different lipid-binding mechanisms. We also found that PM-bound OlyA was rapidly internalized into cells, whereas PM-bound ALOD4 remained on the cell surface. Our findings establish OlyA and ALOD4 as complementary tools to investigate cellular cholesterol transport.

摘要

最近的研究使用了两种结合胆固醇的细菌毒素蛋白,即产气荚膜梭菌α毒素(PFO)和白喉毒素的结构域 4(ALOD4),表明动物细胞膜(PM)中的胆固醇存在于三个不同的池中。第一个池包含可移动的胆固醇,可被 PFO 和 ALOD4 两者访问,它可以快速转运到内质网(ER)以发出胆固醇过量的信号,并维持胆固醇的体内平衡。第二个是不可访问 PFO 和 ALOD4 的鞘磷脂(SM)隔离池,但通过用 SM 降解鞘磷脂酶(SMase)处理而变得可访问。第三个是也不可访问 PFO 和 ALOD4 的必需池,不能通过 SMase 处理释放。可访问的胆固醇池可以被非裂解的 ALOD4 困在活细胞的 PM 上,阻止其转运到 ER。然而,由于缺乏可用的工具,对后两个池的研究受到了阻碍。在这里,我们使用了牡蛎溶素 A(OlyA),它特异性地结合膜中的 SM/胆固醇复合物,来研究 SM 隔离的胆固醇池。非裂解的 OlyA 与活细胞 PM 中的 SM/胆固醇复合物结合,耗尽了可检测到的 ALOD4 的 PM 可访问胆固醇池。结果,可访问的胆固醇从 PM 向 ER 的转运停止,从而激活 SREBP 转录因子并增加胆固醇合成。因此,OlyA 和 ALOD4 都控制 PM 胆固醇的运动,但通过不同的脂质结合机制。我们还发现,PM 结合的 OlyA 被快速内化到细胞中,而 PM 结合的 ALOD4 则留在细胞表面。我们的发现确立了 OlyA 和 ALOD4 是研究细胞胆固醇运输的互补工具。

相似文献

2
The use of anthrolysin O and ostreolysin A to study cholesterol in cell membranes.
Methods Enzymol. 2021;649:543-566. doi: 10.1016/bs.mie.2021.01.011. Epub 2021 Feb 16.
3
High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS.
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):2000-2005. doi: 10.1073/pnas.1621432114. Epub 2017 Feb 6.
6
Molecular Discrimination between Two Conformations of Sphingomyelin in Plasma Membranes.
Cell. 2019 Feb 21;176(5):1040-1053.e17. doi: 10.1016/j.cell.2018.12.042. Epub 2019 Jan 31.
7
8
Tracking cholesterol/sphingomyelin-rich membrane domains with the ostreolysin A-mCherry protein.
PLoS One. 2014 Mar 24;9(3):e92783. doi: 10.1371/journal.pone.0092783. eCollection 2014.
9
Aster Proteins Regulate the Accessible Cholesterol Pool in the Plasma Membrane.
Mol Cell Biol. 2020 Sep 14;40(19). doi: 10.1128/MCB.00255-20.

引用本文的文献

3
Regulation of cellular and systemic sphingolipid homeostasis.
Nat Rev Mol Cell Biol. 2024 Oct;25(10):802-821. doi: 10.1038/s41580-024-00742-y. Epub 2024 Jun 18.
4
Visualization of accessible cholesterol using a GRAM domain-based biosensor.
Nat Commun. 2023 Oct 25;14(1):6773. doi: 10.1038/s41467-023-42498-7.
5
The pathophysiology of excess plasma-free cholesterol.
Curr Opin Lipidol. 2023 Dec 1;34(6):278-286. doi: 10.1097/MOL.0000000000000899. Epub 2023 Sep 25.
6
A single point mutation expands the applicability of ostreolysin A6 in biomedicine.
Sci Rep. 2023 Feb 7;13(1):2149. doi: 10.1038/s41598-023-28949-7.
8
Sphingosine kinases regulate ER contacts with late endocytic organelles and cholesterol trafficking.
Proc Natl Acad Sci U S A. 2022 Sep 27;119(39):e2204396119. doi: 10.1073/pnas.2204396119. Epub 2022 Sep 19.
9
Cholesterol Transport to the Endoplasmic Reticulum.
Cold Spring Harb Perspect Biol. 2023 Feb 1;15(2):a041263. doi: 10.1101/cshperspect.a041263.
10
Sphingolipids and Cholesterol.
Adv Exp Med Biol. 2022;1372:1-14. doi: 10.1007/978-981-19-0394-6_1.

本文引用的文献

1
2
Molecular Discrimination between Two Conformations of Sphingomyelin in Plasma Membranes.
Cell. 2019 Feb 21;176(5):1040-1053.e17. doi: 10.1016/j.cell.2018.12.042. Epub 2019 Jan 31.
3
Intracellular Cholesterol Transport by Sterol Transfer Proteins at Membrane Contact Sites.
Trends Biochem Sci. 2019 Mar;44(3):273-292. doi: 10.1016/j.tibs.2018.10.001. Epub 2018 Nov 8.
5
Retrospective on Cholesterol Homeostasis: The Central Role of Scap.
Annu Rev Biochem. 2018 Jun 20;87:783-807. doi: 10.1146/annurev-biochem-062917-011852. Epub 2017 Aug 25.
8
Switch-like responses of two cholesterol sensors do not require protein oligomerization in membranes.
Biophys J. 2015 Mar 24;108(6):1459-1469. doi: 10.1016/j.bpj.2015.02.008.
9
Conformational changes during pore formation by the perforin-related protein pleurotolysin.
PLoS Biol. 2015 Feb 5;13(2):e1002049. doi: 10.1371/journal.pbio.1002049. eCollection 2015 Feb.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验