Suppr超能文献

患者来源的类器官可预测转移性结直肠癌患者对化疗的反应。

Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients.

作者信息

Ooft Salo N, Weeber Fleur, Dijkstra Krijn K, McLean Chelsea M, Kaing Sovann, van Werkhoven Erik, Schipper Luuk, Hoes Louisa, Vis Daniel J, van de Haar Joris, Prevoo Warner, Snaebjornsson Petur, van der Velden Daphne, Klein Michelle, Chalabi Myriam, Boot Henk, van Leerdam Monique, Bloemendal Haiko J, Beerepoot Laurens V, Wessels Lodewyk, Cuppen Edwin, Clevers Hans, Voest Emile E

机构信息

Department of Molecular Oncology and Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands.

Oncode Institute, 3521 AL Utrecht, Netherlands.

出版信息

Sci Transl Med. 2019 Oct 9;11(513). doi: 10.1126/scitranslmed.aay2574.

Abstract

There is a clear and unmet clinical need for biomarkers to predict responsiveness to chemotherapy for cancer. We developed an in vitro test based on patient-derived tumor organoids (PDOs) from metastatic lesions to identify nonresponders to standard-of-care chemotherapy in colorectal cancer (CRC). In a prospective clinical study, we show the feasibility of generating and testing PDOs for evaluation of sensitivity to chemotherapy. Our PDO test predicted response of the biopsied lesion in more than 80% of patients treated with irinotecan-based therapies without misclassifying patients who would have benefited from treatment. This correlation was specific to irinotecan-based chemotherapy, however, and the PDOs failed to predict outcome for treatment with 5-fluorouracil plus oxaliplatin. Our data suggest that PDOs could be used to prevent cancer patients from undergoing ineffective irinotecan-based chemotherapy.

摘要

对于预测癌症化疗反应的生物标志物,存在明确且未得到满足的临床需求。我们基于转移性病变的患者来源肿瘤类器官(PDO)开发了一种体外测试,以识别结直肠癌(CRC)中对标准护理化疗无反应的患者。在一项前瞻性临床研究中,我们展示了生成和测试PDO以评估化疗敏感性的可行性。我们的PDO测试在超过80%接受基于伊立替康治疗的患者中预测了活检病变的反应,且未对本可从治疗中获益的患者进行错误分类。然而,这种相关性特定于基于伊立替康的化疗,并且PDO未能预测5-氟尿嘧啶加奥沙利铂治疗的结果。我们的数据表明,PDO可用于防止癌症患者接受无效的基于伊立替康的化疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验