Suppr超能文献

生物医学领域人工神经网络模型概述

Overview of artificial neural network models in the biomedical domain.

作者信息

Renganathan V

出版信息

Bratisl Lek Listy. 2019;120(7):536-540. doi: 10.4149/BLL_2019_087.

Abstract

AIM

The aim of this paper is to provide an overview of artificial neural network (ANN) in biomedical domain and compare it with the logistic regression model.

METHODS

Artificial neural network models and logistic regression models were created and compared using a sample of a modified dataset adapted to the dataset from Framingham Heart Study. R statistical software package is used to create and compare the models.

RESULTS

The results indicated that the ANN model is more accurate in classifying the dependent variable than the logistic regression model (84.4 % vs 82.9 %).

CONCLUSION

This paper has shown the effect of artificial neural network models in classifying the survival status (event or non-event) (Tab. 2, Fig. 4, Ref. 29).

摘要

目的

本文旨在概述生物医学领域中的人工神经网络(ANN),并将其与逻辑回归模型进行比较。

方法

使用一个根据弗雷明汉心脏研究数据集改编的修改后数据集样本,创建并比较人工神经网络模型和逻辑回归模型。使用R统计软件包来创建和比较模型。

结果

结果表明,在对因变量进行分类时,人工神经网络模型比逻辑回归模型更准确(84.4%对82.9%)。

结论

本文展示了人工神经网络模型在对生存状态(事件或非事件)进行分类方面的效果(表2,图4,参考文献29)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验