Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
National Institutes of Health, National Institute of Neurological Disorders and Stroke, Bethesda, Maryland.
Traffic. 2020 Jan;21(1):138-155. doi: 10.1111/tra.12701. Epub 2019 Nov 15.
Induced pluripotent stem cells (iPSCs) hold promise to revolutionize studies of intracellular transport in live human neurons and to shed new light on the role of dysfunctional transport in neurodegenerative disorders. Here, we describe an approach for live imaging of axonal and dendritic transport in iPSC-derived cortical neurons. We use transfection and transient expression of genetically-encoded fluorescent markers to characterize the motility of Rab-positive vesicles, including early, late and recycling endosomes, as well as autophagosomes and mitochondria in iPSC-derived neurons. Comparing transport parameters of these organelles with data from primary rat hippocampal neurons, we uncover remarkable similarities. In addition, we generated lysosomal-associated membrane protein 1 (LAMP1)-enhanced green fluorescent protein (EGFP) knock-in iPSCs and show that knock-in neurons can be used to study the transport of endogenously labeled vesicles, as a parallel approach to the transient overexpression of fluorescently labeled organelle markers.
诱导多能干细胞 (iPSC) 有望彻底改变对活的人类神经元内细胞运输的研究,并为功能失调的运输在神经退行性疾病中的作用提供新的认识。在这里,我们描述了一种用于 iPSC 衍生的皮质神经元轴突和树突运输的活体成像方法。我们使用转染和瞬时表达遗传编码的荧光标记物来描述 Rab 阳性囊泡的运动,包括早期、晚期和再循环内体,以及自噬体和线粒体在 iPSC 衍生神经元中的运动。将这些细胞器的运输参数与来自原代大鼠海马神经元的数据进行比较,我们发现了惊人的相似之处。此外,我们生成了溶酶体相关膜蛋白 1 (LAMP1)-增强型绿色荧光蛋白 (EGFP) 敲入 iPSC,并表明敲入神经元可用于研究内源性标记的囊泡的运输,这是一种与荧光标记细胞器标记物瞬时过表达平行的方法。