Suppr超能文献

神经元中线粒体运输的实时成像

Live Imaging Mitochondrial Transport in Neurons.

作者信息

Course Meredith M, Hsieh Chung-Han, Tsai Pei-I, Codding-Bui Jennifer A, Shaltouki Atossa, Wang Xinnan

机构信息

Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA

出版信息

Neuromethods. 2017;123:49-66. doi: 10.1007/978-1-4939-6890-9_3. Epub 2017 Mar 18.

Abstract

Mitochondria are among a cell's most vital organelles. They not only produce the majority of the cell's ATP but also play a key role in Ca buffering and apoptotic signaling. While proper allocation of mitochondria is critical to all cells, it is particularly important for the highly polarized neurons. Because mitochondria are mainly synthesized in the soma, they must be transported long distances to be distributed to the far-flung reaches of the neuron-up to 1 m in the case of some human motor neurons. Furthermore, damaged mitochondria can be detrimental to neuronal health, causing oxidative stress and even cell death, therefore the retrograde transport of damaged mitochondria back to the soma for proper disposal, as well as the anterograde transport of fresh mitochondria from the soma to repair damage, are equally critical. Intriguingly, errors in mitochondrial transport have been increasingly implicated in neurological disorders. Here, we describe how to investigate mitochondrial transport in three complementary neuronal systems: cultured induced pluripotent stem cell-derived neurons, cultured rat hippocampal and cortical neurons, and larval neurons in vivo. These models allow us to uncover the molecular and cellular mechanisms underlying transport issues that may occur under physiological or pathological conditions.

摘要

线粒体是细胞中最重要的细胞器之一。它们不仅产生细胞大部分的三磷酸腺苷(ATP),还在钙缓冲和凋亡信号传导中起关键作用。虽然线粒体的正确分配对所有细胞都至关重要,但对高度极化的神经元尤为重要。由于线粒体主要在胞体中合成,它们必须被远距离运输,以分布到神经元的各个远端——对于一些人类运动神经元来说,距离可达1米。此外,受损的线粒体可能对神经元健康有害,导致氧化应激甚至细胞死亡,因此将受损线粒体逆向运输回胞体进行妥善处理,以及将新鲜线粒体从胞体正向运输以修复损伤,同样至关重要。有趣的是,线粒体运输错误越来越多地与神经系统疾病有关。在这里,我们描述了如何在三个互补的神经元系统中研究线粒体运输:培养的诱导多能干细胞衍生的神经元、培养的大鼠海马和皮质神经元,以及体内的幼虫神经元。这些模型使我们能够揭示在生理或病理条件下可能发生的运输问题背后的分子和细胞机制。

相似文献

1
Live Imaging Mitochondrial Transport in Neurons.
Neuromethods. 2017;123:49-66. doi: 10.1007/978-1-4939-6890-9_3. Epub 2017 Mar 18.
2
Imaging axonal transport of mitochondria.
Methods Enzymol. 2009;457:319-33. doi: 10.1016/S0076-6879(09)05018-6.
3
Analysis of mitochondrial traffic in Drosophila.
Methods Enzymol. 2014;547:131-50. doi: 10.1016/B978-0-12-801415-8.00008-4.
4
ToolBox: Live Imaging of intracellular organelle transport in induced pluripotent stem cell-derived neurons.
Traffic. 2020 Jan;21(1):138-155. doi: 10.1111/tra.12701. Epub 2019 Nov 15.
5
ROS regulation of axonal mitochondrial transport is mediated by Ca2+ and JNK in Drosophila.
PLoS One. 2017 May 18;12(5):e0178105. doi: 10.1371/journal.pone.0178105. eCollection 2017.
6
Come and eat: mitochondrial transport guides mitophagy in ischemic neuronal axons.
Autophagy. 2019 Aug;15(8):1483-1484. doi: 10.1080/15548627.2019.1618099. Epub 2019 May 26.
9
Regulation of mitochondrial transport in neurons.
Exp Cell Res. 2015 May 15;334(1):35-44. doi: 10.1016/j.yexcr.2015.01.004. Epub 2015 Jan 19.

引用本文的文献

3
Impaired interactions of ataxin-3 with protein complexes reveals their specific structure and functions in SCA3 Ki150 model.
Front Mol Neurosci. 2023 Mar 24;16:1122308. doi: 10.3389/fnmol.2023.1122308. eCollection 2023.
4
Exosomes may be the carrier of acupuncture treatment for major depressive disorder.
Front Behav Neurosci. 2023 Feb 16;17:1107265. doi: 10.3389/fnbeh.2023.1107265. eCollection 2023.
6
Strategies for the Treatment of Parkinson's Disease: Beyond Dopamine.
Front Aging Neurosci. 2020 Jan 31;12:4. doi: 10.3389/fnagi.2020.00004. eCollection 2020.
7
PINK1 Inhibits Local Protein Synthesis to Limit Transmission of Deleterious Mitochondrial DNA Mutations.
Mol Cell. 2019 Mar 21;73(6):1127-1137.e5. doi: 10.1016/j.molcel.2019.01.013. Epub 2019 Feb 13.

本文引用的文献

1
Mitophagy of damaged mitochondria occurs locally in distal neuronal axons and requires PINK1 and Parkin.
J Cell Biol. 2014 Sep 1;206(5):655-70. doi: 10.1083/jcb.201401070. Epub 2014 Aug 25.
2
Drosophila melanogaster as a model organism for Alzheimer's disease.
Mol Neurodegener. 2013 Nov 22;8:35. doi: 10.1186/1750-1326-8-35.
3
DISC1 complexes with TRAK1 and Miro1 to modulate anterograde axonal mitochondrial trafficking.
Hum Mol Genet. 2014 Feb 15;23(4):906-19. doi: 10.1093/hmg/ddt485. Epub 2013 Oct 2.
4
Cas9 as a versatile tool for engineering biology.
Nat Methods. 2013 Oct;10(10):957-63. doi: 10.1038/nmeth.2649.
5
Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport.
J Cell Biol. 2013 Jul 22;202(2):351-64. doi: 10.1083/jcb.201302040. Epub 2013 Jul 15.
6
The potential of apolipoprotein E4 to act as a substrate for primary cultures of hippocampal neurons.
Biomaterials. 2013 Apr;34(11):2694-700. doi: 10.1016/j.biomaterials.2013.01.012. Epub 2013 Jan 23.
7
Multiplex genome engineering using CRISPR/Cas systems.
Science. 2013 Feb 15;339(6121):819-23. doi: 10.1126/science.1231143. Epub 2013 Jan 3.
8
Drosophila as a model to study mitochondrial dysfunction in Parkinson's disease.
Cold Spring Harb Perspect Med. 2012 Nov 1;2(11):a009944. doi: 10.1101/cshperspect.a009944.
9
Invertebrate models of Alzheimer's disease.
J Alzheimers Dis. 2013;33(1):3-16. doi: 10.3233/JAD-2012-121204.
10
Choosing and using Drosophila models to characterize modifiers of Huntington's disease.
Biochem Soc Trans. 2012 Aug;40(4):739-45. doi: 10.1042/BST20120072.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验