Course Meredith M, Hsieh Chung-Han, Tsai Pei-I, Codding-Bui Jennifer A, Shaltouki Atossa, Wang Xinnan
Department of Neurosurgery, Stanford University School of Medicine, Stanford, USA
Neuromethods. 2017;123:49-66. doi: 10.1007/978-1-4939-6890-9_3. Epub 2017 Mar 18.
Mitochondria are among a cell's most vital organelles. They not only produce the majority of the cell's ATP but also play a key role in Ca buffering and apoptotic signaling. While proper allocation of mitochondria is critical to all cells, it is particularly important for the highly polarized neurons. Because mitochondria are mainly synthesized in the soma, they must be transported long distances to be distributed to the far-flung reaches of the neuron-up to 1 m in the case of some human motor neurons. Furthermore, damaged mitochondria can be detrimental to neuronal health, causing oxidative stress and even cell death, therefore the retrograde transport of damaged mitochondria back to the soma for proper disposal, as well as the anterograde transport of fresh mitochondria from the soma to repair damage, are equally critical. Intriguingly, errors in mitochondrial transport have been increasingly implicated in neurological disorders. Here, we describe how to investigate mitochondrial transport in three complementary neuronal systems: cultured induced pluripotent stem cell-derived neurons, cultured rat hippocampal and cortical neurons, and larval neurons in vivo. These models allow us to uncover the molecular and cellular mechanisms underlying transport issues that may occur under physiological or pathological conditions.
线粒体是细胞中最重要的细胞器之一。它们不仅产生细胞大部分的三磷酸腺苷(ATP),还在钙缓冲和凋亡信号传导中起关键作用。虽然线粒体的正确分配对所有细胞都至关重要,但对高度极化的神经元尤为重要。由于线粒体主要在胞体中合成,它们必须被远距离运输,以分布到神经元的各个远端——对于一些人类运动神经元来说,距离可达1米。此外,受损的线粒体可能对神经元健康有害,导致氧化应激甚至细胞死亡,因此将受损线粒体逆向运输回胞体进行妥善处理,以及将新鲜线粒体从胞体正向运输以修复损伤,同样至关重要。有趣的是,线粒体运输错误越来越多地与神经系统疾病有关。在这里,我们描述了如何在三个互补的神经元系统中研究线粒体运输:培养的诱导多能干细胞衍生的神经元、培养的大鼠海马和皮质神经元,以及体内的幼虫神经元。这些模型使我们能够揭示在生理或病理条件下可能发生的运输问题背后的分子和细胞机制。