Suppr超能文献

具有距离依赖统计特性的高维适应度景观和适应度海景上的适应性行走。

Adaptive walks on high-dimensional fitness landscapes and seascapes with distance-dependent statistics.

作者信息

Agarwala Atish, Fisher Daniel S

机构信息

Department of Physics, Stanford University, United States of America.

Department of Applied Physics, Stanford University, United States of America.

出版信息

Theor Popul Biol. 2019 Dec;130:13-49. doi: 10.1016/j.tpb.2019.09.011. Epub 2019 Oct 9.

Abstract

The dynamics of evolution is intimately shaped by epistasis - interactions between genetic elements which cause the fitness-effect of combinations of mutations to be non-additive. Analyzing evolutionary dynamics that involves large numbers of epistatic mutations is intrinsically difficult. A crucial feature is that the fitness landscape in the vicinity of the current genome depends on the evolutionary history. A key step is thus developing models that enable study of the effects of past evolution on future evolution. In this work, we introduce a broad class of high-dimensional random fitness landscapes for which the correlations between fitnesses of genomes are a general function of genetic distance. Their Gaussian character allows for tractable computational as well as analytic understanding. We study the properties of these landscapes focusing on the simplest evolutionary process: random adaptive (uphill) walks. Conventional measures of "ruggedness" are shown to not much affect such adaptive walks. Instead, the long-distance statistics of epistasis cause all properties to be highly conditional on past evolution, determining the statistics of the local landscape (the distribution of fitness-effects of available mutations and combinations of these), as well as the global geometry of evolutionary trajectories. In order to further explore the effects of conditioning on past evolution, we model the effects of slowly changing environments. At long times, such fitness "seascapes" cause a statistical steady state with highly intermittent evolutionary dynamics: populations undergo bursts of rapid adaptation, interspersed with periods in which adaptive mutations are rare and the population waits for more new directions to be opened up by changes in the environment. Finally, we discuss prospects for studying more complex evolutionary dynamics and on broader classes of high-dimensional landscapes and seascapes.

摘要

进化的动力学受到上位性的密切影响,上位性是指遗传元件之间的相互作用,这种相互作用会导致突变组合的适应性效应呈现非加性。分析涉及大量上位性突变的进化动力学本质上具有挑战性。一个关键特征是当前基因组附近的适应度景观取决于进化历史。因此,关键的一步是开发能够研究过去进化对未来进化影响的模型。在这项工作中,我们引入了一类广泛的高维随机适应度景观,其中基因组适应度之间的相关性是遗传距离的一般函数。它们的高斯特性使得计算和分析理解变得易于处理。我们研究这些景观的特性,重点关注最简单的进化过程:随机适应性(上坡)行走。结果表明,传统的“崎岖度”度量对这种适应性行走影响不大。相反,上位性的长距离统计使得所有特性都高度依赖于过去的进化,决定了局部景观的统计特性(可用突变及其组合的适应度效应分布)以及进化轨迹的全局几何形状。为了进一步探索条件对过去进化的影响,我们对缓慢变化的环境的影响进行建模。在长时间尺度上,这种适应度“海景”会导致一种具有高度间歇性进化动力学的统计稳态:种群经历快速适应的爆发期,其间穿插着适应性突变稀少且种群等待环境变化开辟更多新方向的时期。最后,我们讨论了研究更复杂进化动力学以及更广泛类别的高维景观和海景的前景。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验