Suppr超能文献

简单适应度景观上的上位性分布。

The distribution of epistasis on simple fitness landscapes.

机构信息

1 Institut des Sciences de l'Evolution, CNRS-UM-IRD , Montpellier , France.

2 Department of Genetics, University of Cambridge , Downing Street, Cambridge CB2 3EH , UK.

出版信息

Biol Lett. 2019 Apr 26;15(4):20180881. doi: 10.1098/rsbl.2018.0881.

Abstract

Fitness interactions between mutations can influence a population's evolution in many different ways. While epistatic effects are difficult to measure precisely, important information is captured by the mean and variance of log fitnesses for individuals carrying different numbers of mutations. We derive predictions for these quantities from a class of simple fitness landscapes, based on models of optimizing selection on quantitative traits. We also explore extensions to the models, including modular pleiotropy, variable effect sizes, mutational bias and maladaptation of the wild type. We illustrate our approach by reanalysing a large dataset of mutant effects in a yeast snoRNA (small nucleolar RNA). Though characterized by some large epistatic effects, these data give a good overall fit to the non-epistatic null model, suggesting that epistasis might have limited influence on the evolutionary dynamics in this system. We also show how the amount of epistasis depends on both the underlying fitness landscape and the distribution of mutations, and so is expected to vary in consistent ways between new mutations, standing variation and fixed mutations.

摘要

突变之间的适应相互作用可以通过许多不同的方式影响群体的进化。虽然上位效应很难精确测量,但携带不同数量突变的个体的对数适应度的均值和方差可以捕捉到重要信息。我们从基于数量性状优化选择模型的一类简单适应度景观中推导出了这些数量的预测值。我们还探讨了模型的扩展,包括模块多效性、可变效应大小、突变偏向和野生型适应不良。我们通过重新分析酵母 snoRNA(小核仁 RNA)中大量突变体效应的数据来说明我们的方法。尽管这些数据具有一些较大的上位效应,但总体上与非上位效应的零模型拟合良好,这表明上位效应对该系统的进化动态可能影响有限。我们还展示了上位效应的数量取决于基础适应度景观和突变的分布,因此预计在新突变、等位基因和固定突变之间以一致的方式变化。

相似文献

1
The distribution of epistasis on simple fitness landscapes.
Biol Lett. 2019 Apr 26;15(4):20180881. doi: 10.1098/rsbl.2018.0881.
2
Negative Epistasis in Experimental RNA Fitness Landscapes.
J Mol Evol. 2017 Dec;85(5-6):159-168. doi: 10.1007/s00239-017-9817-5. Epub 2017 Nov 10.
3
Properties of selected mutations and genotypic landscapes under Fisher's geometric model.
Evolution. 2014 Dec;68(12):3537-54. doi: 10.1111/evo.12545. Epub 2014 Nov 17.
4
The Nonstationary Dynamics of Fitness Distributions: Asexual Model with Epistasis and Standing Variation.
Genetics. 2016 Dec;204(4):1541-1558. doi: 10.1534/genetics.116.187385. Epub 2016 Oct 21.
5
A systematic survey of an intragenic epistatic landscape.
Mol Biol Evol. 2015 Jan;32(1):229-38. doi: 10.1093/molbev/msu301. Epub 2014 Nov 3.
7
Measuring epistasis in fitness landscapes: The correlation of fitness effects of mutations.
J Theor Biol. 2016 May 7;396:132-43. doi: 10.1016/j.jtbi.2016.01.037. Epub 2016 Feb 20.
8
Genotypic Complexity of Fisher's Geometric Model.
Genetics. 2017 Jun;206(2):1049-1079. doi: 10.1534/genetics.116.199497. Epub 2017 Apr 26.
9
Global epistasis on fitness landscapes.
Philos Trans R Soc Lond B Biol Sci. 2023 May 22;378(1877):20220053. doi: 10.1098/rstb.2022.0053. Epub 2023 Apr 3.
10
Adaptive walks on high-dimensional fitness landscapes and seascapes with distance-dependent statistics.
Theor Popul Biol. 2019 Dec;130:13-49. doi: 10.1016/j.tpb.2019.09.011. Epub 2019 Oct 9.

引用本文的文献

1
Fisher's Geometric Model as a Tool to Study Speciation.
Cold Spring Harb Perspect Biol. 2024 Jul 1;16(7):a041442. doi: 10.1101/cshperspect.a041442.
2
Genetic Interactions in Various Environmental Conditions in .
Genes (Basel). 2023 Nov 15;14(11):2080. doi: 10.3390/genes14112080.
3
Systematic conformation-to-phenotype mapping via limited deep sequencing of proteins.
Mol Cell. 2023 Jun 1;83(11):1936-1952.e7. doi: 10.1016/j.molcel.2023.05.006.
5
Phenotypic and genotypic parallel evolution in parapatric ecotypes of Senecio.
Evolution. 2021 Dec;75(12):3115-3131. doi: 10.1111/evo.14387. Epub 2021 Nov 8.
6
The geometry and genetics of hybridization.
Evolution. 2020 Dec;74(12):2575-2590. doi: 10.1111/evo.14116. Epub 2020 Nov 23.

本文引用的文献

1
Coadapted genomes and selection on hybrids: Fisher's geometric model explains a variety of empirical patterns.
Evol Lett. 2018 Aug 14;2(5):472-498. doi: 10.1002/evl3.66. eCollection 2018 Oct.
2
THE POPULATION GENETICS OF ADAPTATION: THE DISTRIBUTION OF FACTORS FIXED DURING ADAPTIVE EVOLUTION.
Evolution. 1998 Aug;52(4):935-949. doi: 10.1111/j.1558-5646.1998.tb01823.x.
3
How does epistasis influence the response to selection?
Heredity (Edinb). 2017 Jan;118(1):96-109. doi: 10.1038/hdy.2016.109. Epub 2016 Nov 30.
4
The genetics of speciation: Insights from Fisher's geometric model.
Evolution. 2016 Jul;70(7):1450-64. doi: 10.1111/evo.12968. Epub 2016 Jul 5.
5
Network of epistatic interactions within a yeast snoRNA.
Science. 2016 May 13;352(6287):840-4. doi: 10.1126/science.aaf0965. Epub 2016 Apr 14.
7
Properties of selected mutations and genotypic landscapes under Fisher's geometric model.
Evolution. 2014 Dec;68(12):3537-54. doi: 10.1111/evo.12545. Epub 2014 Nov 17.
8
Fisher's geometrical model emerges as a property of complex integrated phenotypic networks.
Genetics. 2014 May;197(1):237-55. doi: 10.1534/genetics.113.160325. Epub 2014 Feb 28.
9
Rates of fitness decline and rebound suggest pervasive epistasis.
Evolution. 2014 Jan;68(1):150-62. doi: 10.1111/evo.12234. Epub 2013 Sep 2.
10
Epistasis, pleiotropy, and the mutation load in sexual and asexual populations.
Evolution. 2014 Jan;68(1):137-49. doi: 10.1111/evo.12232. Epub 2013 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验