Suppr超能文献

人工智能导向的个性化肿瘤学:以替莫唑胺为例。

Personalized oncology with artificial intelligence: The case of temozolomide.

机构信息

University of Lyon, Lyon, F-69007, France; CNRS, GATE Lyon Saint-Etienne, F-69130, France.

Emlyon Business School, Écully, F-69130, France; ETH Zurich, Zurich, CH-8092, Switzerland.

出版信息

Artif Intell Med. 2019 Aug;99:101693. doi: 10.1016/j.artmed.2019.07.001. Epub 2019 Aug 12.

Abstract

PURPOSE

Using artificial intelligence techniques, we compute optimal personalized protocols for temozolomide administration in a population of patients with variability.

METHODS

Our optimizations are based on a Pharmacokinetics/Pharmacodynamics (PK/PD) model with population variability for temozolomide, inspired by Faivre et al. [10] and Panetta et al. [25,26]. The patient pharmacokinetic parameters can only be partially observed at admission and are progressively learned by Bayesian inference during treatment. For every patient, we seek to minimize tumor size while avoiding severe toxicity, i.e. maintaining an acceptable toxicity level. The optimization algorithm we rely on borrows from the field of artificial intelligence.

RESULTS

Optimal personalized protocols (OPP) achieve a sizable decrease in tumor size at the population level but also patient-wise. The tumor size is on average 67.2 g lighter than with the standard maximum-tolerated dose protocol (MTD) after 336 days (12 MTD cycles). The corresponding 90% confidence interval for average tumor size reduction amounts to 58.6-82.7 g. When treated with OPP, less patients experience severe toxicity in comparison to MTD.

MAJOR FINDINGS

We quantify in-silico the benefits offered by personalized oncology in the case of temozolomide administration. To do so, we compute optimal personalized protocols for a population of heterogeneous patients using artificial intelligence techniques. At each treatment day, the protocol is updated by taking into account the feedback obtained from patient's reaction to the drug administration. Personalized protocols greatly differ from each other, and from the standard MTD protocol. Benefits of personalization are very sizable: tumor sizes are much smaller on average and also patient-wise, while severe toxicity is made less frequent.

摘要

目的

利用人工智能技术,我们为具有变异性的患者群体计算替莫唑胺给药的最佳个性化方案。

方法

我们的优化基于 Faivre 等人 [10] 和 Panetta 等人 [25,26] 提出的替莫唑胺人群变异性药代动力学/药效动力学 (PK/PD) 模型。入院时只能部分观察到患者的药代动力学参数,并在治疗过程中通过贝叶斯推断逐步学习。对于每个患者,我们力求在避免严重毒性(即维持可接受的毒性水平)的同时最小化肿瘤大小。我们依赖的优化算法借鉴了人工智能领域。

结果

最佳个性化方案 (OPP) 在人群水平和患者个体水平上均实现了肿瘤大小的显著减小。与标准最大耐受剂量方案 (MTD) 相比,在 336 天后(12 个 MTD 周期),肿瘤平均减轻 67.2g。平均肿瘤大小减少的 90%置信区间为 58.6-82.7g。与 MTD 相比,接受 OPP 治疗的患者中严重毒性的发生率较低。

主要发现

我们使用人工智能技术为替莫唑胺给药的个体化肿瘤学计算了计算机模拟的益处。为此,我们使用人工智能技术为异质患者群体计算了最佳的个性化方案。在每个治疗日,通过考虑从患者对药物给药反应中获得的反馈,更新方案。个性化方案彼此之间存在很大差异,与标准 MTD 方案也存在很大差异。个性化的益处非常显著:肿瘤大小平均而言更小,而且每个患者都更小,同时严重毒性的发生率降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验