Suppr超能文献

一项关于通过第一和第五指骨和跖骨的骨长测量来预测性别的人工神经网络试验。

A trial on artificial neural networks in predicting sex through bone length measurements on the first and fifth phalanges and metatarsals.

机构信息

Department of Medical Biology, Karabuk University, Karabük, Turkey.

Department of Anatomy, Karabuk University, Karabük, Turkey.

出版信息

Comput Biol Med. 2019 Dec;115:103490. doi: 10.1016/j.compbiomed.2019.103490. Epub 2019 Oct 8.

Abstract

BACKGROUND

Predicting sex is an important problem in forensic medicine. The femur, patella, mandible and calcaneus bones are frequently used in predicting sex. In our study, we aimed to use the artificial neural network (ANN) technique to predict sex by measuring the values of the phalanges of the first and fifth toes and the first and fifth metatarsal bones.

METHOD

All bone measurements were conducted on the direct X-ray images of 176 males and 178 females in the age range of 24-60 years. The multilayer perceptron classifier (MLPC) input layer included parameters on the bone length measurements of phalanx proximalis I, phalanx distalis I, metatarsal I, phalanx proximalis V, phalanx medialis V, phalanx distalis V and metatarsal V. The output layer contained two neurons to define the male and female sexes. The present study used an MLPC model that had two hidden layers, and the first and second hidden layers contained 14 and 7 nodes, respectively.

RESULTS

The model had an overall accuracy (Acc) of 0.95, specificity (Spe) of 0.97, sensitivity (Sen) of 0.95 and Matthews correlation coefficient (Mcc) of 0.92. While the sex prediction success of our proposed model was higher in women, the results were more specific in men and more sensitive in women (Acc = 0.93, Acc = 0.98, Sen = 0.93, Spe = 0.98, Sen = 0.98 and Spe = 0.93).

CONCLUSIONS

This study demonstrated that the ANN model for length measurements on small bones is a highly effective instrument for sex prediction.

摘要

背景

性别预测是法医学中的一个重要问题。股骨、髌骨、下颌骨和跟骨是常用于预测性别的骨骼。在本研究中,我们旨在通过测量第一和第五跖骨以及第一和第五跖骨的趾骨的数值,利用人工神经网络(ANN)技术预测性别。

方法

对 176 名 24-60 岁男性和 178 名女性的直接 X 射线图像进行了所有骨骼测量。多层感知机分类器(MLPC)输入层包括第一和第五趾骨近节、远节、跖骨近节、远节和跖骨的骨长测量参数。输出层包含两个神经元,以定义男性和女性性别。本研究使用的 MLPC 模型有两个隐藏层,第一个和第二个隐藏层分别包含 14 个和 7 个节点。

结果

该模型的总体准确率(Acc)为 0.95,特异性(Spe)为 0.97,敏感性(Sen)为 0.95,马修斯相关系数(Mcc)为 0.92。虽然我们提出的模型在女性中的性别预测成功率更高,但在男性中结果更特异,在女性中更敏感(Acc=0.93,Acc=0.98,Sen=0.93,Spe=0.98,Sen=0.98 和 Spe=0.93)。

结论

本研究表明,基于小骨长度测量的 ANN 模型是一种预测性别的有效工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验