利用机器学习算法并结合颅计算机断层扫描图像参数进行性别估计的研究。

A study on sex estimation by using machine learning algorithms with parameters obtained from computerized tomography images of the cranium.

机构信息

Department of Anatomy, Faculty of Medicine, Karabük University, Karabük, Turkey.

Department of Anatomy, Faculty of Medicine, İzmir Bakırçay University, İzmir, Turkey.

出版信息

Sci Rep. 2022 Mar 11;12(1):4278. doi: 10.1038/s41598-022-07415-w.

Abstract

The aim of this study is to test whether sex prediction can be made by using machine learning algorithms (ML) with parameters taken from computerized tomography (CT) images of cranium and mandible skeleton which are known to be dimorphic. CT images of the cranium skeletons of 150 men and 150 women were included in the study. 25 parameters determined were tested with different ML algorithms. Accuracy (Acc), Specificity (Spe), Sensitivity (Sen), F1 score (F1), Matthews correlation coefficient (Mcc) values were included as performance criteria and Minitab 17 package program was used in descriptive statistical analyses. p ≤ 0.05 value was considered as statistically significant. In ML algorithms, the highest prediction was found with 0.90 Acc, 0.80 Mcc, 0.90 Spe, 0.90 Sen, 0.90 F1 values as a result of LR algorithms. As a result of confusion matrix, it was found that 27 of 30 males and 27 of 30 females were predicted correctly. Acc ratios of other MLs were found to be between 0.81 and 0.88. It has been concluded that the LR algorithm to be applied to the parameters obtained from CT images of the cranium skeleton will predict sex with high accuracy.

摘要

本研究旨在测试是否可以通过使用机器学习算法(ML),根据已知具有二态性的颅和下颌骨骼的计算机断层扫描(CT)图像的参数来进行性别预测。本研究纳入了 150 名男性和 150 名女性的颅骨 CT 图像。使用不同的 ML 算法对确定的 25 个参数进行了测试。准确性(Acc)、特异性(Spe)、敏感性(Sen)、F1 评分(F1)和马修斯相关系数(Mcc)值被用作性能标准,并使用 Minitab 17 程序包进行描述性统计分析。p≤0.05 被认为具有统计学意义。在 ML 算法中,LR 算法得出的预测结果最高,Acc 为 0.90、Mcc 为 0.80、Spe 为 0.90、Sen 为 0.90、F1 值为 0.90。根据混淆矩阵,发现 30 名男性中有 27 名和 30 名女性中有 27 名被正确预测。其他 ML 的 Acc 比值在 0.81 到 0.88 之间。研究得出结论,将 LR 算法应用于颅骨骨骼的 CT 图像获得的参数可以准确预测性别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索