Klimas Aleksandra, Bucur Octavian, Njeri Brigdet, Zhao Yongxin
Department of Biological Sciences, Carnegie Mellon University.
QPathology.
J Vis Exp. 2019 Sep 25(151). doi: 10.3791/60195.
In modern pathology, optical microscopy plays an important role in disease diagnosis by revealing microscopic structures of clinical specimens. However, the fundamental physical diffraction limit prevents interrogation of nanoscale anatomy and subtle pathological changes when using conventional optical imaging approaches. Here, we describe a simple and inexpensive protocol, called expansion pathology (ExPath), for nanoscale optical imaging of common types of clinical primary tissue specimens, including both fixed-frozen or formalin-fixed paraffin embedded (FFPE) tissue sections. This method circumvents the optical diffraction limit by chemically transforming the tissue samples into tissue-hydrogel hybrid and physically expanding them isotropically across multiple scales in pure water. Due to expansion, previously unresolvable molecules are separated and thus can be observed using a conventional optical microscope.
在现代病理学中,光学显微镜通过揭示临床标本的微观结构在疾病诊断中发挥着重要作用。然而,基本的物理衍射极限使得在使用传统光学成像方法时无法探究纳米级别的解剖结构和细微的病理变化。在此,我们描述了一种简单且成本低廉的方案,称为扩展病理学(ExPath),用于对常见类型的临床原发性组织标本进行纳米级光学成像,包括固定冷冻或福尔马林固定石蜡包埋(FFPE)组织切片。该方法通过将组织样本化学转化为组织 - 水凝胶复合物,并在纯水中在多个尺度上各向同性地物理扩展,从而规避了光学衍射极限。由于扩展,先前无法分辨的分子被分开,因此可以使用传统光学显微镜进行观察。