College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.
J Cell Mol Med. 2019 Dec;23(12):7946-7960. doi: 10.1111/jcmm.14725. Epub 2019 Oct 17.
Coptisine is a natural small-molecular compound extracted from Coptis chinensis (CC) with a history of using for thousands of years. This work aimed at summarizing coptisine's activity and providing advice for its clinical use. We analysed the online papers in the database of SciFinder, Web of Science, PubMed, Google scholar and CNKI by setting keywords as 'coptisine' in combination of 'each pivotal pathway target'. Based on the existing literatures, we find (a) coptisine exerted potential to be an anti-cancer, anti-inflammatory, CAD ameliorating or anti-bacterial drug through regulating the signalling transduction of pathways such as NF-κB, MAPK, PI3K/Akt, NLRP3 inflammasome, RANKL/RANK and Beclin 1/Sirt1. However, we also (b) observe that the plasma concentration of coptisine demonstrates obvious non-liner relationship with dosage, and even the highest dosage used in animal study actually cannot reach the minimum concentration level used in cell experiments owing to the poor absorption and low availability of coptisine. We conclude (a) further investigations can focus on coptisine's effect on caspase-1-involved inflammasome assembling and pyroptosis activation, as well as autophagy. (b) Under circumstance of promoting coptisine availability by pursuing nano- or microrods strategies or applying salt-forming process to coptisine, can it be introduced to clinical trial.
小檗碱是从黄连(CC)中提取的天然小分子化合物,已有数千年的使用历史。本工作旨在总结小檗碱的活性,并为其临床应用提供建议。我们通过在 SciFinder、Web of Science、PubMed、Google scholar 和 CNKI 数据库中设置关键字“小檗碱”,结合“每个关键途径靶点”,分析了在线论文。基于现有文献,我们发现(a)小檗碱通过调节 NF-κB、MAPK、PI3K/Akt、NLRP3 炎性体、RANKL/RANK 和 Beclin 1/Sirt1 等途径的信号转导,具有作为抗癌、抗炎、改善 CAD 或抗菌药物的潜力。然而,我们也(b)观察到小檗碱的血浆浓度与剂量之间呈现明显的非线性关系,即使在动物研究中使用的最高剂量实际上也无法达到细胞实验中使用的最小浓度水平,这是由于小檗碱的吸收不良和低可用性所致。我们的结论是(a)进一步的研究可以集中在小檗碱对 caspase-1 参与的炎性体组装和细胞焦亡激活以及自噬的影响上。(b)在通过追求纳米或微棒策略或对小檗碱进行盐形成过程来提高小檗碱可用性的情况下,它是否可以引入临床试验。