Suppr超能文献

建模选择对信息价值分析的影响:来自真实实验的实证分析。

Influence of Modeling Choices on Value of Information Analysis: An Empirical Analysis from a Real-World Experiment.

机构信息

Center for the Evaluation of Value and Risk in Health, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, 800 Washington St., Box 63, Boston, MA, 02111, USA.

Department of Pharmacy, University of Washington, Seattle, WA, USA.

出版信息

Pharmacoeconomics. 2020 Feb;38(2):171-179. doi: 10.1007/s40273-019-00848-8.

Abstract

BACKGROUND

Value of information (VOI) analysis often requires modeling to characterize and propagate uncertainty. In collaboration with a cancer clinical trial group, we integrated a VOI approach to assessing trial proposals.

OBJECTIVE

This paper aims to explore the impact of modeling choices on VOI results and to share lessons learned from the experience.

METHODS

After selecting two proposals (A: phase III, breast cancer; B: phase II, pancreatic cancer) for in-depth evaluations, we categorized key modeling choices relevant to trial decision makers (characterizing uncertainty of efficacy, evidence thresholds to change clinical practice, and sample size) and modelers (cycle length, survival distribution, simulation runs, and other choices). Using a $150,000 per quality-adjusted life-year (QALY) threshold, we calculated the patient-level expected value of sample information (EVSI) for each proposal and examined whether each modeling choice led to relative change of more than 10% from the averaged base-case estimate. We separately analyzed the impact of the effective time horizon.

RESULTS

The base-case EVSI was $118,300 for Proposal A and $22,200 for Proposal B per patient. Characterizing uncertainty of efficacy was the most important choice in both proposals (e.g. Proposal A: $118,300 using historical data vs. $348,300 using expert survey), followed by the sample size and the choice of survival distribution. The assumed effective time horizon also had a substantial impact on the population-level EVSI.

CONCLUSIONS

Modeling choices can have a substantial impact on VOI. Therefore, it is important for groups working to incorporate VOI into research prioritization to adhere to best practices, be clear in their reporting and justification for modeling choices, and to work closely with the relevant decision makers, with particular attention to modeling choices.

摘要

背景

价值信息(VOI)分析通常需要建模来描述和传播不确定性。我们与一个癌症临床试验小组合作,将 VOI 方法整合到评估试验提案中。

目的

本文旨在探讨建模选择对 VOI 结果的影响,并分享从经验中吸取的教训。

方法

在选择两个提案(A:三期,乳腺癌;B:二期,胰腺癌)进行深入评估后,我们对与试验决策者(描述疗效不确定性、改变临床实践的证据阈值和样本量)和建模者(周期长度、生存分布、模拟运行和其他选择)相关的关键建模选择进行了分类。使用每质量调整生命年(QALY)$150,000 的阈值,我们计算了每个提案的患者水平预期样本信息价值(EVSI),并检查了每个建模选择是否导致相对于平均基础情况估计的相对变化超过 10%。我们分别分析了有效时间跨度的影响。

结果

基础情况下,A 提案每位患者的 EVSI 为$118,300,B 提案为$22,200。在两个提案中,疗效不确定性的描述都是最重要的选择(例如,A 提案:使用历史数据为$118,300,使用专家调查为$348,300),其次是样本量和生存分布的选择。假设的有效时间跨度也对人群水平的 EVSI 有重大影响。

结论

建模选择会对 VOI 产生重大影响。因此,对于致力于将 VOI 纳入研究优先级的团队来说,遵守最佳实践、明确报告和建模选择的理由、并与相关决策者密切合作非常重要,特别是要注意建模选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验