Suppr超能文献

流行病学中的结果建模策略:传统方法与基本替代方法

Outcome modelling strategies in epidemiology: traditional methods and basic alternatives.

作者信息

Greenland Sander, Daniel Rhian, Pearce Neil

机构信息

Department of Epidemiology and Department of Statistics, University of California, Los Angeles, CA, USA.

Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK.

出版信息

Int J Epidemiol. 2016 Apr;45(2):565-75. doi: 10.1093/ije/dyw040. Epub 2016 Apr 20.

Abstract

Controlling for too many potential confounders can lead to or aggravate problems of data sparsity or multicollinearity, particularly when the number of covariates is large in relation to the study size. As a result, methods to reduce the number of modelled covariates are often deployed. We review several traditional modelling strategies, including stepwise regression and the 'change-in-estimate' (CIE) approach to deciding which potential confounders to include in an outcome-regression model for estimating effects of a targeted exposure. We discuss their shortcomings, and then provide some basic alternatives and refinements that do not require special macros or programming. Throughout, we assume the main goal is to derive the most accurate effect estimates obtainable from the data and commercial software. Allowing that most users must stay within standard software packages, this goal can be roughly approximated using basic methods to assess, and thereby minimize, mean squared error (MSE).

摘要

控制过多潜在混杂因素可能会导致或加剧数据稀疏或多重共线性问题,尤其是当协变量数量相对于研究规模较大时。因此,通常会采用减少建模协变量数量的方法。我们回顾了几种传统的建模策略,包括逐步回归和“估计值变化”(CIE)方法,以决定在估计目标暴露效应的结果回归模型中纳入哪些潜在混杂因素。我们讨论了它们的缺点,然后提供了一些基本的替代方法和改进方法,这些方法不需要特殊的宏或编程。在整个过程中,我们假设主要目标是从数据和商业软件中得出最准确的效应估计值。考虑到大多数用户必须使用标准软件包,这个目标可以通过使用基本方法来评估并从而最小化均方误差(MSE)大致实现。

相似文献

2
Statistical foundations for model-based adjustments.基于模型的调整的统计基础。
Annu Rev Public Health. 2015 Mar 18;36:89-108. doi: 10.1146/annurev-publhealth-031914-122559.
7
Multiple imputation with sequential penalized regression.多重插补与序贯惩罚回归。
Stat Methods Med Res. 2019 May;28(5):1311-1327. doi: 10.1177/0962280218755574. Epub 2018 Feb 16.

引用本文的文献

本文引用的文献

2
Statistical foundations for model-based adjustments.基于模型的调整的统计基础。
Annu Rev Public Health. 2015 Mar 18;36:89-108. doi: 10.1146/annurev-publhealth-031914-122559.
3
On the definition of a confounder.关于混杂因素的定义。
Ann Stat. 2013 Feb;41(1):196-220. doi: 10.1214/12-aos1058.
5
Bayesian regression in SAS software.贝叶斯回归在 SAS 软件中的应用。
Int J Epidemiol. 2013 Feb;42(1):308-17. doi: 10.1093/ije/dys213. Epub 2012 Dec 10.
6
Bayesian effect estimation accounting for adjustment uncertainty.考虑调整不确定性的贝叶斯效应估计。
Biometrics. 2012 Sep;68(3):661-71. doi: 10.1111/j.1541-0420.2011.01731.x. Epub 2012 Feb 24.
8
On model selection and model misspecification in causal inference.在因果推断中的模型选择和模型误设定。
Stat Methods Med Res. 2012 Feb;21(1):7-30. doi: 10.1177/0962280210387717. Epub 2010 Nov 12.
9
Illustrating bias due to conditioning on a collider.图示由于在共因上进行条件推断而产生的偏差。
Int J Epidemiol. 2010 Apr;39(2):417-20. doi: 10.1093/ije/dyp334. Epub 2009 Nov 19.
10
Exhaustion, automation, theory, and confounding.疲惫、自动化、理论与混杂因素。
Epidemiology. 2009 Jul;20(4):523-4. doi: 10.1097/EDE.0b013e3181a82501.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验