Heidelberg University Hospital, Institute of Medical Biometry and Informatics, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany.
Peter L. Reichertz Institute for Medical Informatics of TU Braunschweig and Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
BMC Med Inform Decis Mak. 2019 Oct 21;19(1):195. doi: 10.1186/s12911-019-0917-6.
Case-based reasoning is a proven method that relies on learned cases from the past for decision support of a new case. The accuracy of such a system depends on the applied similarity measure, which quantifies the similarity between two cases. This work proposes a collection of methods for similarity measures especially for comparison of clinical cases based on survival data, as they are available for example from clinical trials.
Our approach is intended to be used in scenarios, where it is of interest to use longitudinal data, such as survival data, for a case-based reasoning approach. This might be especially important, where uncertainty about the ideal therapy decision exists. The collection of methods consists of definitions of the local similarity of nominal as well as numeric attributes, a calculation of attribute weights, a feature selection method and finally a global similarity measure. All of them use survival time (consisting of survival status and overall survival) as a reference of similarity. As a baseline, we calculate a survival function for each value of any given clinical attribute.
We define the similarity between values of the same attribute by putting the estimated survival functions in relation to each other. Finally, we quantify the similarity by determining the area between corresponding curves of survival functions. The proposed global similarity measure is designed especially for cases from randomized clinical trials or other collections of clinical data with survival information. Overall survival can be considered as an eligible and alternative solution for similarity calculations. It is especially useful, when similarity measures that depend on the classic solution-describing attribute "applied therapy" are not applicable. This is often the case for data from clinical trials containing randomized arms.
In silico evaluation scenarios showed that the mean accuracy of biomarker detection in k = 10 most similar cases is higher (0.909-0.998) than for competing similarity measures, such as Heterogeneous Euclidian-Overlap Metric (0.657-0.831) and Discretized Value Difference Metric (0.535-0.671). The weight calculation method showed a more than six times (6.59-6.95) higher weight for biomarker attributes over non-biomarker attributes. These results suggest that the similarity measure described here is suitable for applications based on survival data.
基于案例的推理是一种经过验证的方法,它依赖于过去的学习案例来为新案例提供决策支持。这种系统的准确性取决于所应用的相似度度量,它量化了两个案例之间的相似度。这项工作提出了一系列用于相似度度量的方法,特别是用于基于生存数据的临床案例比较,因为这些数据可从临床试验中获得。
我们的方法旨在用于感兴趣使用纵向数据(如生存数据)进行基于案例的推理的场景。在存在对理想治疗决策的不确定性的情况下,这可能尤为重要。该方法集包括对名义和数值属性的局部相似度的定义、属性权重的计算、特征选择方法以及最终的全局相似度度量。所有这些方法都使用生存时间(包括生存状态和总生存)作为相似度的参考。作为基线,我们为任何给定临床属性的每个值计算生存函数。
我们通过将估计的生存函数相互关联来定义同一属性值之间的相似度。最后,我们通过确定相应生存函数曲线之间的区域来量化相似度。所提出的全局相似度度量专门为来自随机临床试验或其他包含生存信息的临床数据集合的案例而设计。总生存可以被认为是相似度计算的一个合适和替代的解决方案。当依赖于经典的“应用治疗”描述属性的相似度度量不可用时,它尤其有用。这种情况通常发生在包含随机臂的临床试验数据中。
模拟评估场景表明,在 k=10 个最相似案例中检测生物标志物的平均准确性(0.909-0.998)高于竞争相似度度量,如异质欧式重叠度量(0.657-0.831)和离散值差度量(0.535-0.671)。权重计算方法显示生物标志物属性的权重比非生物标志物属性高 6.59-6.95 倍。这些结果表明,这里描述的相似度度量适合基于生存数据的应用。