Control Engineering and Intelligent Systems Research Group, Universitat de Girona, Campus Montilivi, Girona, Spain.
Artif Intell Med. 2011 Feb;51(2):81-91. doi: 10.1016/j.artmed.2010.09.002. Epub 2010 Oct 25.
Medical applications have special features (interpretation of results in medical metrics, experiment reproducibility and dealing with complex data) that require the development of particular tools. The eXiT*CBR framework is proposed to support the development of and experimentation with new case-based reasoning (CBR) systems for medical diagnosis.
Our framework offers a modular, heterogeneous environment that combines different CBR techniques for different application requirements. The graphical user interface allows easy navigation through a set of experiments that are pre-visualized as plots (receiver operator characteristics (ROC) and accuracy curves). This user-friendly navigation allows easy analysis and replication of experiments. Used as a plug-in on the same interface, eXiT*CBR can work with any data mining technique such as determining feature relevance.
The results show that eXiT*CBR is a user-friendly tool that facilitates medical users to utilize CBR methods to determine diagnoses in the field of breast cancer, dealing with different patterns implicit in the data.
Although several tools have been developed to facilitate the rapid construction of prototypes, none of them has taken into account the particularities of medical applications as an appropriate interface to medical users. eXiT*CBR aims to fill this gap. It uses CBR methods and common medical visualization tools, such as ROC plots, that facilitate the interpretation of the results. The navigation capabilities of this tool allow the tuning of different CBR parameters using experimental results. In addition, the tool allows experiment reproducibility.
医学应用具有特殊特征(医学指标的结果解释、实验可重复性和处理复杂数据),这需要开发特定的工具。eXiT*CBR 框架旨在支持开发和试验新的基于案例的推理 (CBR) 系统用于医学诊断。
我们的框架提供了一个模块化、异构的环境,结合了不同的 CBR 技术以满足不同的应用需求。图形用户界面允许通过一组预先可视化的实验(接收者操作特征 (ROC) 和准确性曲线)轻松导航。这种用户友好的导航允许轻松分析和复制实验。作为同一界面上的插件使用,eXiT*CBR 可以与任何数据挖掘技术(如确定特征相关性)一起使用。
结果表明,eXiT*CBR 是一个用户友好的工具,它便于医学用户利用 CBR 方法在乳腺癌领域确定诊断,处理数据中隐含的不同模式。
尽管已经开发了一些工具来方便快速构建原型,但没有一个工具考虑到医学应用的特殊性作为与医学用户的适当接口。eXiT*CBR 旨在填补这一空白。它使用 CBR 方法和常见的医学可视化工具,如 ROC 图,以方便解释结果。该工具的导航功能允许使用实验结果调整不同的 CBR 参数。此外,该工具允许实验可重复性。