Suppr超能文献

通过单铂原子构建原子界面以增强光催化产氢性能

Engineering the Atomic Interface with Single Platinum Atoms for Enhanced Photocatalytic Hydrogen Production.

作者信息

Chen Yuanjun, Ji Shufang, Sun Wenming, Lei Yongpeng, Wang Qichen, Li Ang, Chen Wenxing, Zhou Gang, Zhang Zedong, Wang Yu, Zheng Lirong, Zhang Qinghua, Gu Lin, Han Xiaodong, Wang Dingsheng, Li Yadong

机构信息

Department of Chemistry, Tsinghua University, Beijing, 100084, China.

College of Science, China Agricultural University, Beijing, 100193, China.

出版信息

Angew Chem Int Ed Engl. 2020 Jan 13;59(3):1295-1301. doi: 10.1002/anie.201912439. Epub 2019 Nov 20.

Abstract

It is highly desirable but challenging to optimize the structure of photocatalysts at the atomic scale to facilitate the separation of electron-hole pairs for enhanced performance. Now, a highly efficient photocatalyst is formed by assembling single Pt atoms on a defective TiO support (Pt /def-TiO ). Apart from being proton reduction sites, single Pt atoms promote the neighboring TiO units to generate surface oxygen vacancies and form a Pt-O-Ti atomic interface. Experimental results and density functional theory calculations demonstrate that the Pt-O-Ti atomic interface effectively facilitates photogenerated electrons to transfer from Ti defective sites to single Pt atoms, thereby enhancing the separation of electron-hole pairs. This unique structure makes Pt /def-TiO exhibit a record-level photocatalytic hydrogen production performance with an unexpectedly high turnover frequency of 51423 h , exceeding the Pt nanoparticle supported TiO catalyst by a factor of 591.

摘要

在原子尺度上优化光催化剂的结构以促进电子 - 空穴对的分离从而提高性能是非常理想但具有挑战性的。现在,通过在有缺陷的TiO载体上组装单个Pt原子(Pt/def-TiO)形成了一种高效的光催化剂。除了作为质子还原位点外,单个Pt原子促进相邻的TiO单元产生表面氧空位并形成Pt - O - Ti原子界面。实验结果和密度泛函理论计算表明,Pt - O - Ti原子界面有效地促进了光生电子从Ti缺陷位点转移到单个Pt原子,从而增强了电子 - 空穴对的分离。这种独特的结构使Pt/def-TiO表现出创纪录水平的光催化产氢性能,其周转频率高达51423 h,比负载Pt纳米颗粒的TiO催化剂高出591倍。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验