Suppr超能文献

盐胁迫下番茄植株对壳聚糖固定化聚集CBMB20接种的生理响应

Physiological response of tomato plant to chitosan-immobilized aggregated CBMB20 inoculation under salinity stress.

作者信息

Chanratana Mak, Joe Manoharan Melvin, Roy Choudhury Aritra, Anandham Rangasamy, Krishnamoorthy Ramasamy, Kim Kiyoon, Jeon Sunyoung, Choi Joonho, Choi Jeongyun, Sa Tongmin

机构信息

1Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Chungbuk Republic of Korea.

6Department of Plant Protection Sanitary and Phytosanitary, General Directorate of Agriculture, Ministry of Agriculture, Forestry and Fisheries, Phnom Penh, Cambodia.

出版信息

3 Biotech. 2019 Nov;9(11):397. doi: 10.1007/s13205-019-1923-1. Epub 2019 Oct 11.

Abstract

The use of plant growth promoting bacteria as bioinoculant to alleviate salt stress is a sustainable and eco-friendly approach in agriculture. However, the maintenance of the bacterial population in the soil for longer period is a major concern. In the present study, chitosan-immobilized aggregated CBMB20 was used as a bioinoculant to improve tomato plant ( Mill.) growth under salt stress. The chitosan-immobilized aggregated CBMB20 was able to enhance plant dry weight, nutrient uptake (N, P, K and Mg), photosynthetic efficiency and decrease electrolyte leakage under salt stress conditions. The oxidative stress exerted by elevated levels of salt stress was also alleviated by the formulated bioinoculant, as it up-regulated the antioxidant enzyme activities and enhanced the accumulation of proline which acts as an osmolyte. The chitosan-immobilized aggregated CBMB20 was able to decrease the excess Na influx into the plant cells and subsequently decreasing the Na/K ratio to improve tomato plant growth under salt stress conditions. Therefore, it is proposed that the chitosan-immobilized aggregated . CBMB20 could be used as a bioinoculant to promote the plant growth under salt stress conditions.

摘要

利用植物促生细菌作为生物菌剂来缓解盐胁迫是农业中一种可持续且环保的方法。然而,如何使细菌群体在土壤中长时间维持是一个主要问题。在本研究中,壳聚糖固定化聚集的CBMB20被用作生物菌剂,以改善盐胁迫下番茄植株(Mill.)的生长。壳聚糖固定化聚集的CBMB20能够提高植株干重、养分吸收(氮、磷、钾和镁)、光合效率,并在盐胁迫条件下减少电解质渗漏。配制的生物菌剂还缓解了盐胁迫水平升高所施加的氧化胁迫,因为它上调了抗氧化酶活性,并增强了作为渗透调节剂的脯氨酸的积累。壳聚糖固定化聚集的CBMB20能够减少过量的钠流入植物细胞,并随后降低钠/钾比,以改善盐胁迫条件下番茄植株的生长。因此,建议壳聚糖固定化聚集的CBMB20可作为生物菌剂用于促进盐胁迫条件下的植物生长。

相似文献

1
Physiological response of tomato plant to chitosan-immobilized aggregated CBMB20 inoculation under salinity stress.
3 Biotech. 2019 Nov;9(11):397. doi: 10.1007/s13205-019-1923-1. Epub 2019 Oct 11.
7
Plant Beneficial Deep-Sea Actinobacterium, MT1.1 Promote Growth of Tomato () under Salinity Stress.
Biology (Basel). 2022 Jan 26;11(2):191. doi: 10.3390/biology11020191.
9
Aggregation of selected plant growth promoting Methylobacterium strains: role of cell surface components and hydrophobicity.
Arch Microbiol. 2013 Mar;195(3):219-25. doi: 10.1007/s00203-013-0866-x. Epub 2013 Jan 25.

引用本文的文献

2
ACC Deaminase Producing CBMB20 and Exogenous Trehalose Application Alleviate Salinity Stress in Arabidopsis.
J Microbiol Biotechnol. 2025 Jul 11;35:e2501007. doi: 10.4014/jmb.2501.01007.
4
Putrescine mitigates NaCl-induced stress by modulating gene expression, antioxidants, and ethylene level in tomato.
Plant Signal Behav. 2025 Dec;20(1):2515431. doi: 10.1080/15592324.2025.2515431. Epub 2025 Jun 16.
7
Tomato responses to salinity stress: From morphological traits to genetic changes.
Front Plant Sci. 2023 Feb 10;14:1118383. doi: 10.3389/fpls.2023.1118383. eCollection 2023.
8
Biomining for halotolerant PGPR and endophytes for promotion of salt tolerance in L.
Front Microbiol. 2023 Feb 14;14:1085787. doi: 10.3389/fmicb.2023.1085787. eCollection 2023.

本文引用的文献

1
Brevibacterium linens RS16 confers salt tolerance to Oryza sativa genotypes by regulating antioxidant defense and H ATPase activity.
Microbiol Res. 2018 Oct;215:89-101. doi: 10.1016/j.micres.2018.06.007. Epub 2018 Jun 19.
3
Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective.
Front Plant Sci. 2017 Oct 23;8:1768. doi: 10.3389/fpls.2017.01768. eCollection 2017.
4
Beneficial Soil Bacterium OS261 Augments Salt Tolerance and Promotes Red Pepper Plant Growth.
Front Plant Sci. 2017 May 4;8:705. doi: 10.3389/fpls.2017.00705. eCollection 2017.
5
Plant growth-promoting bacteria as inoculants in agricultural soils.
Genet Mol Biol. 2015 Dec;38(4):401-19. doi: 10.1590/S1415-475738420150053. Epub 2015 Nov 3.
6
PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity.
Physiol Mol Biol Plants. 2014 Apr;20(2):201-7. doi: 10.1007/s12298-014-0224-8. Epub 2014 Mar 8.
7
Indole-3-acetic acid in plant-microbe interactions.
Antonie Van Leeuwenhoek. 2014 Jul;106(1):85-125. doi: 10.1007/s10482-013-0095-y. Epub 2014 Jan 21.
8
Plant growth-promoting bacteria: mechanisms and applications.
Scientifica (Cairo). 2012;2012:963401. doi: 10.6064/2012/963401. Epub 2012 Sep 19.
9
An innovative bioremediation strategy using a bacterial consortium entrapped in chitosan beads.
J Environ Manage. 2013 Sep 30;127:10-7. doi: 10.1016/j.jenvman.2013.04.014. Epub 2013 May 6.
10
Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats.
Springerplus. 2013 Dec;2(1):6. doi: 10.1186/2193-1801-2-6. Epub 2013 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验