Departament de Ciència de Materials i Química Física and IQTC, Universitat de Barcelona, Martí i Franquès, 1-11, 08028 Barcelona, Spain.
Phys Chem Chem Phys. 2019 Nov 21;21(43):24218-24231. doi: 10.1039/c9cp04561a. Epub 2019 Oct 29.
The dynamics of the Ne dimer and Ne-Ne adduct formation in a superfluid helium nanodroplet [(He); T = 0.37 K], Ne + Ne@(He)→ Ne@(He)/Ne-Ne@(He) + (N-N')He with N = 500, has been investigated using a hybrid approach (quantum and classical mechanics (QM-CM) descriptions for helium and the Ne atoms, respectively) and taking into account the angular momentum of the attacking Ne atom, Ne. Comparison with zero angular momentum QM results of our own shows that the present results are similar to the quantum ones for the initial Ne velocities (v) of 500 and 800 m s (the former one being the most probable velocity of Ne at 300 K), in all cases leading to the Ne dimer (r = 3.09 Å). However, significant differences appear below v = 500 m s, because in the QM-CM dynamics, instead of the dimer, a Ne-Ne adduct is formed (r = 5.45 Å). The formation of this adduct will probably dominate as the contribution to reactivity of angular momenta larger than zero is the leading one and angular momentum strongly acts against the Ne production. Angular momentum adds further difficulties in producing the dimer, since it makes it more difficult to remove the helium density between both Ne atoms to lead, subsequently, to the Ne molecule. Hence, the formation of the neon-neon adduct, Ne-Ne@(He), clearly dominates the reactivity of the system, which results in the formation of a "quantum gel"/"quantum foam", because the two Ne atoms essentially maintain their identity inside the nanodroplet. Large enough Ne initial angular momentum values can induce the formation of vortex lines by the collapse of superficial excitations (ripplons), but they occur with greater difficulty than in the case of the capture of the Ne atom by a non doped helium nanodroplet, due to the wave interferences induced by the Ne induced by the solvation layers of the Ne atom originally placed inside the nanodroplet. We hope that this work will encourage other researchers to investigate the reaction dynamics in helium nanodroplets, an interesting topic on which there are few studies available.
在超流氦纳米液滴 [(He); T = 0.37 K] 中,研究了 Ne 二聚体和 Ne-Ne 加合物的形成动力学,Ne + Ne@(He)→ Ne@(He)/Ne-Ne@(He) + (N-N')He,其中 N = 500,并使用混合方法(分别为氦和 Ne 原子的量子力学(QM)和经典力学(CM)描述)并考虑到攻击 Ne 原子的角动量,Ne。与我们自己的零角动量 QM 结果的比较表明,对于初始 Ne 速度(v)为 500 和 800 m s 的所有情况,本结果与量子结果相似,(前者是 300 K 时 Ne 的最可能速度),都导致 Ne 二聚体(r = 3.09 Å)。然而,在 v < 500 m s 时出现了显著差异,因为在 QM-CM 动力学中,形成的不是二聚体,而是 Ne-Ne 加合物(r = 5.45 Å)。由于角动量的贡献占主导地位,并且角动量强烈反对 Ne 的产生,因此这种加合物的形成可能会占据主导地位。角动量增加了形成二聚体的进一步困难,因为它使得去除两个 Ne 原子之间的氦密度变得更加困难,从而导致 Ne 分子的形成。因此,Ne-Ne@(He) 的形成显然主导了系统的反应性,导致了“量子凝胶”/“量子泡沫”的形成,因为两个 Ne 原子在纳米液滴内部基本上保持其身份。足够大的 Ne 初始角动量值可以通过表面激发(ripplons)的坍塌来诱导涡旋线的形成,但与捕获 Ne 原子的情况相比,它们更难发生,由于由纳米液滴内部原来放置的 Ne 原子的溶剂化层引起的 Ne 诱导的波干涉。我们希望这项工作将鼓励其他研究人员研究氦纳米液滴中的反应动力学,这是一个研究较少的有趣课题。