Division of Pulmonary and Critical Care Medicine, University of California-Davis, Davis, California, USA.
Division of Nephrology, Department of Internal Medicine, University of California-Davis, Davis, California, USA.
FASEB J. 2019 Dec;33(12):14354-14369. doi: 10.1096/fj.201901705R. Epub 2019 Oct 26.
Targeting activated fibroblasts, including myofibroblast differentiation, has emerged as a key therapeutic strategy in patients with idiopathic pulmonary fibrosis (IPF). However, there is no available therapy capable of selectively eradicating myofibroblasts or limiting their genesis. Through an integrative analysis of the regulator genes that are responsible for the activation of IPF fibroblasts, we noticed the phosphatidylinositol 4,5-bisphosphate (PIP2)-binding protein, myristoylated alanine-rich C-kinase substrate (MARCKS), as a potential target molecule for IPF. Herein, we have employed a 25-mer novel peptide, MARCKS phosphorylation site domain sequence (MPS), to determine if MARCKS inhibition reduces pulmonary fibrosis through the inactivation of PI3K/protein kinase B (AKT) signaling in fibroblast cells. We first observed that higher levels of MARCKS phosphorylation and the myofibroblast marker α-smooth muscle actin (α-SMA) were notably overexpressed in all tested IPF lung tissues and fibroblast cells. Treatment with the MPS peptide suppressed levels of MARCKS phosphorylation in primary IPF fibroblasts. A kinetic assay confirmed that this peptide binds to phospholipids, particularly PIP2, with a dissociation constant of 17.64 nM. As expected, a decrease of phosphatidylinositol (3,4,5)-trisphosphate pools and AKT activity occurred in MPS-treated IPF fibroblast cells. MPS peptide was demonstrated to impair cell proliferation, invasion, and migration in multiple IPF fibroblast cells as well as to reduce pulmonary fibrosis in bleomycin-treated mice . Surprisingly, we found that MPS peptide decreases α-SMA expression and synergistically interacts with nintedanib treatment in IPF fibroblasts. Our data suggest MARCKS as a druggable target in pulmonary fibrosis and also provide a promising antifibrotic agent that may lead to effective IPF treatments.-Yang, D. C., Li, J.-M., Xu, J., Oldham, J., Phan, S. H., Last, J. A., Wu, R., Chen, C.-H. Tackling MARCKS-PIP3 circuit attenuates fibroblast activation and fibrosis progression.
针对特发性肺纤维化 (IPF) 患者中活化的成纤维细胞(包括肌成纤维细胞分化)已成为一种关键的治疗策略。然而,目前尚无能够选择性消除肌成纤维细胞或限制其生成的可用疗法。通过对导致 IPF 成纤维细胞激活的调节基因进行综合分析,我们注意到磷脂酰肌醇 4,5-二磷酸(PIP2)结合蛋白,豆蔻酰化丙氨酸丰富的 C 激酶底物(MARCKS),是 IPF 的潜在靶标分子。在此,我们采用了一种 25 个氨基酸的新型肽,MARCKS 磷酸化位点结构域序列(MPS),以确定 MARCKS 抑制是否通过抑制 PI3K/蛋白激酶 B(AKT)信号通路在成纤维细胞中减少肺纤维化。我们首先观察到,在所有测试的 IPF 肺组织和成纤维细胞中,MARCKS 磷酸化水平和肌成纤维细胞标志物α-平滑肌肌动蛋白(α-SMA)的表达水平明显升高。MPS 肽处理可抑制原代 IPF 成纤维细胞中 MARCKS 的磷酸化水平。动力学分析证实该肽与磷脂,特别是 PIP2 结合,解离常数为 17.64 nM。正如预期的那样,在 MPS 处理的 IPF 成纤维细胞中,三磷酸肌醇(3,4,5)-三磷酸酯池和 AKT 活性降低。MPS 肽可损害多种 IPF 成纤维细胞的增殖、侵袭和迁移,并可减少博来霉素处理的小鼠的肺纤维化。令人惊讶的是,我们发现 MPS 肽可降低 α-SMA 表达,并与 IPF 成纤维细胞中的尼达尼布治疗具有协同作用。我们的数据表明 MARCKS 是肺纤维化的一个可药物治疗的靶点,并提供了一种有前途的抗纤维化剂,可能导致有效的 IPF 治疗。-Yang, D. C., Li, J.-M., Xu, J., Oldham, J., Phan, S. H., Last, J. A., Wu, R., Chen, C.-H. 靶向 MARCKS-PIP3 电路可抑制成纤维细胞激活和纤维化进展。