Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel.
School of Pharmacy, Sungkyunkwan University, Jangan-gu, Suwon 16419, Korea.
Biomolecules. 2019 Oct 28;9(11):660. doi: 10.3390/biom9110660.
Dehydrodolichyl diphosphate synthase (DHDDS) is the catalytic subunit of the heteromeric human -prenyltransferase complex, synthesizing the glycosyl carrier precursor for N-linked protein glycosylation. Consistent with the important role of N-glycosylation in protein biogenesis, DHDDS mutations result in human diseases. Importantly, DHDDS encompasses a C-terminal region, which does not converge with any known conserved domains. Therefore, despite the clinical importance of DHDDS, our understating of its structure-function relations remains poor. Here, we provide a structural model for the full-length human DHDDS using a multidisciplinary experimental and computational approach. Size-exclusion chromatography multi-angle light scattering revealed that DHDDS forms a monodisperse homodimer in solution. Enzyme kinetics assays revealed that it exhibits catalytic activity, although reduced compared to that reported for the intact heteromeric complex. Our model suggests that the DHDDS C-terminus forms a helix-turn-helix motif, tightly packed against the core catalytic domain. This model is consistent with small-angle X-ray scattering data, indicating that the full-length DHDDS maintains a similar conformation in solution. Moreover, hydrogen-deuterium exchange mass-spectrometry experiments show time-dependent deuterium uptake in the C-terminal domain, consistent with its overall folded state. Finally, we provide a model for the DHDDS-NgBR heterodimer, offering a structural framework for future structural and functional studies of the complex.
去氢二磷酸表鲨烯合酶(DHDDS)是异源人prenyltransferase 复合物的催化亚基,合成 N-连接蛋白糖基化的糖基载体前体。与 N-糖基化在蛋白质生物发生中的重要作用一致,DHDDS 突变导致人类疾病。重要的是,DHDDS 包含一个 C 端区域,该区域与任何已知的保守结构域都不收敛。因此,尽管 DHDDS 具有临床重要性,但我们对其结构-功能关系的理解仍然很差。在这里,我们使用多学科的实验和计算方法为全长人 DHDDS 提供了一个结构模型。尺寸排阻色谱多角度光散射表明,DHDDS 在溶液中形成单分散的同源二聚体。酶动力学测定表明,它表现出催化活性,尽管与完整异源复合物报道的活性相比有所降低。我们的模型表明,DHDDS 的 C 端形成一个螺旋-转角-螺旋模体,与核心催化结构域紧密结合。该模型与小角度 X 射线散射数据一致,表明全长 DHDDS 在溶液中保持相似的构象。此外,氢氘交换质谱实验显示 C 端结构域的氘摄取随时间变化,与整体折叠状态一致。最后,我们提供了 DHDDS-NgBR 异源二聚体的模型,为该复合物的结构和功能研究提供了结构框架。