Suppr超能文献

采用综合计算与实验方法对全长人去氢二磷酸鲨烯合酶进行结构特征分析。

Structural Characterization of Full-Length Human Dehydrodolichyl Diphosphate Synthase Using an Integrative Computational and Experimental Approach.

机构信息

Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 6997801, Israel.

School of Pharmacy, Sungkyunkwan University, Jangan-gu, Suwon 16419, Korea.

出版信息

Biomolecules. 2019 Oct 28;9(11):660. doi: 10.3390/biom9110660.

Abstract

Dehydrodolichyl diphosphate synthase (DHDDS) is the catalytic subunit of the heteromeric human -prenyltransferase complex, synthesizing the glycosyl carrier precursor for N-linked protein glycosylation. Consistent with the important role of N-glycosylation in protein biogenesis, DHDDS mutations result in human diseases. Importantly, DHDDS encompasses a C-terminal region, which does not converge with any known conserved domains. Therefore, despite the clinical importance of DHDDS, our understating of its structure-function relations remains poor. Here, we provide a structural model for the full-length human DHDDS using a multidisciplinary experimental and computational approach. Size-exclusion chromatography multi-angle light scattering revealed that DHDDS forms a monodisperse homodimer in solution. Enzyme kinetics assays revealed that it exhibits catalytic activity, although reduced compared to that reported for the intact heteromeric complex. Our model suggests that the DHDDS C-terminus forms a helix-turn-helix motif, tightly packed against the core catalytic domain. This model is consistent with small-angle X-ray scattering data, indicating that the full-length DHDDS maintains a similar conformation in solution. Moreover, hydrogen-deuterium exchange mass-spectrometry experiments show time-dependent deuterium uptake in the C-terminal domain, consistent with its overall folded state. Finally, we provide a model for the DHDDS-NgBR heterodimer, offering a structural framework for future structural and functional studies of the complex.

摘要

去氢二磷酸表鲨烯合酶(DHDDS)是异源人prenyltransferase 复合物的催化亚基,合成 N-连接蛋白糖基化的糖基载体前体。与 N-糖基化在蛋白质生物发生中的重要作用一致,DHDDS 突变导致人类疾病。重要的是,DHDDS 包含一个 C 端区域,该区域与任何已知的保守结构域都不收敛。因此,尽管 DHDDS 具有临床重要性,但我们对其结构-功能关系的理解仍然很差。在这里,我们使用多学科的实验和计算方法为全长人 DHDDS 提供了一个结构模型。尺寸排阻色谱多角度光散射表明,DHDDS 在溶液中形成单分散的同源二聚体。酶动力学测定表明,它表现出催化活性,尽管与完整异源复合物报道的活性相比有所降低。我们的模型表明,DHDDS 的 C 端形成一个螺旋-转角-螺旋模体,与核心催化结构域紧密结合。该模型与小角度 X 射线散射数据一致,表明全长 DHDDS 在溶液中保持相似的构象。此外,氢氘交换质谱实验显示 C 端结构域的氘摄取随时间变化,与整体折叠状态一致。最后,我们提供了 DHDDS-NgBR 异源二聚体的模型,为该复合物的结构和功能研究提供了结构框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7393/6921004/450cdfef8702/biomolecules-09-00660-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验