J Agric Food Chem. 2019 Nov 13;67(45):12402-12407. doi: 10.1021/acs.jafc.9b05328. Epub 2019 Oct 30.
The hydrolysis of chlorantraniliprole (3-bromo-N-[4-chloro-2-methyl-6-(methylcarbamoyl)phenyl]-1-(3-chloro-2-pyridine-2-yl)-1-pyrazole-5-carboxamide; CAP) was investigated over the pH range of 6-10, reflective of California rice field conditions, with variable additions of Cu, Zn, Mn, or Ni. Dissipation accelerated as pH increased with half-lives ranging from 26.9 to 2.2 days with slight inhibition in rice field water. The addition of divalent metals was not observed to catalyze the hydrolysis of CAP at pH 6, indicating that the insecticide is likely to remain recalcitrant to hydrolysis in neutral or acidic surface waters. However, Mn and Ni were observed to inhibit hydrolysis at pH 8 and 9. Attenuated total reflectance Fourier transform infrared analysis supports the conclusion that divalent metals may withdraw electron density from the amide nitrogen via interaction with the amide oxygen, though additional quantum chemical modeling is necessary to provide further mechanistic insights. Overall, the hydrolysis of CAP in California rice fields and their surrounding surface waters will be dominated by pH and inhibited by dissolved metal species.
氯虫苯甲酰胺(3-溴-N-[4-氯-2-甲基-6-(甲脒基)苯基]-1-(3-氯-2-吡啶-2-基)-1-吡唑-5-甲酰胺;CAP)的水解反应在 pH 值为 6-10 的范围内进行,这反映了加利福尼亚稻田的条件,并添加了不同量的 Cu、Zn、Mn 或 Ni。随着 pH 值的升高,水解速度加快,半衰期范围从 26.9 天到 2.2 天,在稻田水中略有抑制。在 pH 值为 6 时,添加二价金属并未观察到催化 CAP 的水解,这表明在中性或酸性地表水条件下,杀虫剂可能仍然不易水解。然而,在 pH 值为 8 和 9 时,Mn 和 Ni 被观察到抑制水解。衰减全反射傅里叶变换红外分析支持了这样的结论,即二价金属可能通过与酰胺氧的相互作用,从酰胺氮上夺取电子密度,尽管需要进一步的量子化学建模来提供进一步的机制见解。总体而言,CAP 在加利福尼亚稻田及其周围地表水的水解将主要受 pH 值和溶解金属物种的抑制。