Departments of Pathology, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
Pittsburgh VA Health System, Pittsburgh, PA, 15213, USA.
Sci Rep. 2019 Oct 29;9(1):15517. doi: 10.1038/s41598-019-51825-2.
Natural mutations such as lysine 255 to glutamic acid (K to E), threonine 259 to isoleucine (T to I) and serine 262 to proline (S to P) that occur within the actin binding domain of alpha-actinin-4 (ACTN4) cause an autosomal dominant form of focal segmental glomerulosclerosis (FSGS) in affected humans. This appears due to elevated actin binding propensity in podocytes resulting in a 'frozen' cytoskeleton. What is challenging is how this cellular behavior would be compatible with other cell functions that rely on cytoskeleton plasticity. Our previous finding revealed that wild type ACTN4 can be phosphorylated at tyrosine 4 and 31 upon stimulation by epidermal growth factor (EGF) to reduce the binding to actin cytoskeleton. We queried whether the elevated actin binding activity of FSGS mutants can be downregulated by EGF-mediated phosphorylation, to discern a mechanism by which the actin-cytoskeleton can be released in FSGS. In this manuscript, we first constructed variants with Y4/31E to mimic the phosphorylation at tyrosines 4 and 31 based on earlier modeling simulations that predicted that this would bury the actin binding domains and lead to a decrease in actin binding activity. We found that Y4/31E significantly reduced the actin binding activity of K255E, T259I and S262P, dramatically preventing them from aggregating in, and inhibiting motility of, podocytes, fibroblasts and melanoma cells. A putative kinase target site at Y265 in the actin binding domain was also generated as a phosphomimetic ACTN4 Y265E that demonstrated even greater binding to actin filaments than K255E and the other FSGS mutants. That the tyrosine kinase regulation of FSGS mutation binding to actin filaments can occur in cells was shown by phosphorylation on Y4 and Y31 of the K225E after extended exposure of cells to EGF, with a decrease in ACTN4 aggregates in fibroblasts. These findings will provide evidence for targeting the N-termini of FSGS ACTN4 mutants to downregulate their actin binding activities for ameliorating the glomerulosclerotic phenotype of patients.
在 α-辅肌动蛋白-4(ACTN4)的肌动蛋白结合域内发生的自然突变,如赖氨酸 255 突变为谷氨酸(K 突变为 E)、苏氨酸 259 突变为异亮氨酸(T 突变为 I)和丝氨酸 262 突变为脯氨酸(S 突变为 P),导致受影响的人类出现常染色体显性局灶性节段性肾小球硬化症(FSGS)。这似乎是由于足细胞中肌动蛋白结合倾向升高,导致“冻结”的细胞骨架。具有挑战性的是,这种细胞行为如何与依赖细胞骨架可塑性的其他细胞功能相兼容。我们之前的发现表明,野生型 ACTN4 在表皮生长因子(EGF)刺激下可在酪氨酸 4 和 31 处被磷酸化,从而减少与肌动蛋白细胞骨架的结合。我们询问 FSGS 突变体的升高的肌动蛋白结合活性是否可以通过 EGF 介导的磷酸化下调,以辨别 FSGS 中肌动蛋白-细胞骨架可以释放的机制。在本文中,我们首先基于早期的建模模拟构建了 Y4/31E 变体,以模拟酪氨酸 4 和 31 的磷酸化,预测这将掩盖肌动蛋白结合域并导致肌动蛋白结合活性降低。我们发现 Y4/31E 显著降低了 K255E、T259I 和 S262P 的肌动蛋白结合活性,从而阻止它们聚集并抑制足细胞、成纤维细胞和黑色素瘤细胞的运动。还生成了在肌动蛋白结合域中的假定激酶靶位点 Y265 的磷酸模拟物 ACTN4 Y265E,其与 K255E 和其他 FSGS 突变体相比显示出更高的肌动蛋白丝结合能力。通过在 EGF 延长暴露后对 K225E 的 Y4 和 Y31 进行磷酸化,证明 FSGS 突变结合到肌动蛋白丝上的酪氨酸激酶调节可以在细胞中发生,成纤维细胞中的 ACTN4 聚集减少。这些发现将为靶向 FSGS ACTN4 突变体的 N 端以下调其肌动蛋白结合活性从而改善患者的肾小球硬化表型提供证据。