Ji Lei, Li Lei, Ji Xuqiang, Zhang Ya, Mou Shiyong, Wu Tongwei, Liu Qian, Li Baihai, Zhu Xiaojuan, Luo Yonglan, Shi Xifeng, Asiri Abdullah M, Sun Xuping
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
College of Chemistry, Sichuan University, Chengdu, 610064, Sichuan, China.
Angew Chem Int Ed Engl. 2020 Jan 7;59(2):758-762. doi: 10.1002/anie.201912836. Epub 2019 Nov 19.
Electrochemical reduction of CO into various chemicals and fuels provides an attractive pathway for environmental and energy sustainability. It is now shown that a FeP nanoarray on Ti mesh (FeP NA/TM) acts as an efficient 3D catalyst electrode for the CO reduction reaction to convert CO into alcohols with high selectivity. In 0.5 m KHCO , such FeP NA/TM is capable of achieving a high Faradaic efficiency (FE ) up to 80.2 %, with a total FE of 94.3 % at -0.20 V vs. reversible hydrogen electrode. Density functional theory calculations reveal that the FeP(211) surface significantly promotes the adsorption and reduction of CO toward CH OH owing to the synergistic effect of two adjacent Fe atoms, and the potential-determining step is the hydrogenation process of *CO.
将CO电化学还原为各种化学品和燃料为环境和能源可持续性提供了一条有吸引力的途径。现已表明,钛网上的FeP纳米阵列(FeP NA/TM)作为一种高效的3D催化剂电极,用于CO还原反应,可将CO高选择性地转化为醇类。在0.5 m KHCO 中,这种FeP NA/TM能够实现高达80.2%的高法拉第效率(FE ),相对于可逆氢电极,在-0.20 V时总FE 为94.3%。密度泛函理论计算表明,由于两个相邻Fe原子的协同作用,FeP(211)表面显著促进了CO向CH OH的吸附和还原,且电位决定步骤是*CO的氢化过程。