Mou Shiyong, Wu Tongwei, Xie Junfeng, Zhang Ya, Ji Lei, Huang Hong, Wang Ting, Luo Yonglan, Xiong Xiaoli, Tang Bo, Sun Xuping
College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, Sichuan, China.
Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China.
Adv Mater. 2019 Sep;31(36):e1903499. doi: 10.1002/adma.201903499. Epub 2019 Jul 23.
Electrocatalysis has emerged as an attractive way for artificial CO fixation to CH OH, but the design and development of metal-free electrocatalyst for highly selective CH OH formation still remains a key challenge. Here, it is demonstrated that boron phosphide nanoparticles perform highly efficiently as a nonmetal electrocatalyst toward electrochemical reduction of CO to CH OH with high selectivity. In 0.1 m KHCO , this catalyst achieves a high Faradaic efficiency of 92.0% for CH OH at -0.5 V versus reversible hydrogen electrode. Density functional theory calculations reveal that B and P synergistically promote the binding and activation of CO , and the rate-determining step for the CO reduction reaction is dominated by *CO + *OH to *CO + *H O process with free energy change of 1.36 eV. In addition, CO and CH O products are difficultly generated on BP (111) surface, which is responsible for the high activity and selectivity of the CO -to-CH OH conversion process.
电催化已成为将人工固定的二氧化碳转化为甲醇的一种有吸引力的方法,但用于高效选择性生成甲醇的无金属电催化剂的设计和开发仍然是一个关键挑战。在此,已证明磷化硼纳米颗粒作为一种非金属电催化剂,在将二氧化碳电化学还原为甲醇方面具有高效且高选择性。在0.1 m KHCO₃中,相对于可逆氢电极,该催化剂在-0.5 V时对甲醇实现了92.0%的高法拉第效率。密度泛函理论计算表明,硼和磷协同促进二氧化碳的结合和活化,二氧化碳还原反应的速率决定步骤主要由*CO + OH生成CO + *H₂O的过程主导,自由能变化为1.36 eV。此外,在BP(111)表面难以生成一氧化碳和甲醛产物,这是二氧化碳转化为甲醇过程具有高活性和选择性的原因。