Gervits Natalia E, Gippius Andrey A, Tkachev Alexey V, Demikhov Evgeniy I, Starchikov Sergey S, Lyubutin Igor S, Vasiliev Alexander L, Chekhonin Vladimir P, Abakumov Maxim A, Semkina Alevtina S, Mazhuga Alexander G
Shubnikov Institute of Crystallography of FSRC "Crystallography and Photonics" RAS, 119333, Moscow, Russia.
Lebedev Physical Institute, Russian Academy of Sciences, 119991, Moscow, Russia.
Beilstein J Nanotechnol. 2019 Oct 2;10:1964-1972. doi: 10.3762/bjnano.10.193. eCollection 2019.
One of the future applications of magnetic nanoparticles is the development of new iron-oxide-based magnetic resonance imaging (MRI) negative contrast agents, which are intended to improve the results of diagnostics and complement existing Gd-based contrast media. Iron oxide nanoparticles designed for use as MRI contrast media are precisely examined by a variety of methods: powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, Mössbauer spectroscopy and zero-field nuclear magnetic resonance (ZF-NMR) spectroscopy. TEM and XRD measurements reveal a spherical shape of the nanoparticles with an average diameter of 5-8 nm and a cubic spinel-type crystal structure of space group -3. Raman, Mössbauer and NMR spectroscopy clearly indicate the presence of the maghemite γ-FeO phase. Moreover, a difference in the magnetic behavior of uncoated and human serum albumin coated iron oxide nanoparticles was observed by Mössbauer spectroscopy. This difference in magnetic behavior is explained by the influence of biofunctionalization on the magnetic and electronic properties of the iron oxide nanoparticles. The ZF-NMR spectra analysis allowed us to determine the relative amount of iron located in the core and the surface layer of the nanoparticles. The obtained results are important for understanding the structural and magnetic properties of iron oxide nanoparticles used as contrast agents for MRI.
磁性纳米颗粒未来的应用之一是开发新型基于氧化铁的磁共振成像(MRI)阴性造影剂,旨在改善诊断结果并补充现有的基于钆的造影剂。用作MRI造影剂的氧化铁纳米颗粒通过多种方法进行精确检测:粉末X射线衍射(XRD)、透射电子显微镜(TEM)、拉曼光谱、穆斯堡尔光谱和零场核磁共振(ZF-NMR)光谱。TEM和XRD测量揭示了纳米颗粒呈球形,平均直径为5-8纳米,具有空间群为-3的立方尖晶石型晶体结构。拉曼光谱、穆斯堡尔光谱和核磁共振光谱清楚地表明存在磁赤铁矿γ-FeO相。此外,通过穆斯堡尔光谱观察到未包覆和人血清白蛋白包覆的氧化铁纳米颗粒在磁行为上存在差异。这种磁行为的差异是由生物功能化对氧化铁纳米颗粒的磁性和电子性质的影响所解释的。ZF-NMR光谱分析使我们能够确定位于纳米颗粒核心和表面层的铁的相对含量。所获得的结果对于理解用作MRI造影剂的氧化铁纳米颗粒的结构和磁性性质非常重要。