School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK.
Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK.
Nucleic Acids Res. 2019 Dec 2;47(21):11452-11460. doi: 10.1093/nar/gkz936.
Serine integrases are emerging as core tools in synthetic biology and have applications in biotechnology and genome engineering. We have designed a split-intein serine integrase-based system with potential for regulation of site-specific recombination events at the protein level in vivo. The ϕC31 integrase was split into two extein domains, and intein sequences (Npu DnaEN and Ssp DnaEC) were attached to the two termini to be fused. Expression of these two components followed by post-translational protein trans-splicing in Escherichia coli generated a fully functional ϕC31 integrase. We showed that protein splicing is necessary for recombination activity; deletion of intein domains or mutation of key intein residues inactivated recombination. We used an invertible promoter reporter system to demonstrate a potential application of the split intein-regulated site-specific recombination system in building reversible genetic switches. We used the same split inteins to control the reconstitution of a split Integrase-Recombination Directionality Factor fusion (Integrase-RDF) that efficiently catalysed the reverse attR x attL recombination. This demonstrates the potential for split-intein regulation of the forward and reverse reactions using the integrase and the integrase-RDF fusion, respectively. The split-intein integrase is a potentially versatile, regulatable component for building synthetic genetic circuits and devices.
丝氨酸整合酶作为合成生物学的核心工具正在兴起,在生物技术和基因组工程中有广泛的应用。我们设计了一种基于分裂整合酶的系统,该系统有可能在体内对蛋白质水平的特异性重组事件进行调控。将 ϕC31 整合酶分割成两个外显肽域,并在两个末端连接整合酶序列(Npu DnaEN 和 Ssp DnaEC)以进行融合。这两个成分的表达,随后在大肠杆菌中进行翻译后蛋白转剪接,产生了一个完全功能的 ϕC31 整合酶。我们表明蛋白剪接对于重组活性是必要的;缺失整合酶结构域或关键整合酶残基的突变使重组失活。我们使用可反转的启动子报告系统,展示了分裂整合酶调控的特异性重组系统在构建可逆遗传开关方面的潜在应用。我们使用相同的分裂整合酶来控制分裂整合酶-重组方向性因子融合(Integrase-RDF)的重新组装,该融合有效地催化了反向 attR x attL 重组。这表明使用整合酶和整合酶-RDF 融合分别调控正向和反向反应的分裂整合酶调控具有潜力。分裂整合酶是构建合成遗传回路和器件的一种潜在的多功能、可调控组件。