School of Information Science and Engineering, Shandong Normal University, Jinan, China.
PLoS One. 2019 Oct 31;14(10):e0223967. doi: 10.1371/journal.pone.0223967. eCollection 2019.
Collaborative filtering (CF) is a common recommendation mechanism that relies on user-item ratings. However, the intrinsic sparsity of user-item rating data can be problematic in many domains and settings, limiting the ability to generate accurate predictions and effective recommendations. At present, most algorithms use two-valued trust relationship of social network to improve recommendation quality but fail to take into account the difference of trust intensity of each friend and user's comment information. To this end, the recommendation system within a social network adopts topical attention and probabilistic matrix factorization (STAPMF) is proposed. We combine the trust information in social networks and the topical information from review documents by proposing a novel algorithm combining probabilistic matrix factorization and attention-based recurrent neural networks to extract item underlying feature vectors, user's personal potential feature vectors, and user's social hidden feature vectors, which represent the features extracted from the user's trusted network. Using real-world datasets, we show a significant improvement in recommendation performance comparing with the prevailing state-of-the-art algorithms for social network-based recommendation.
协同过滤(CF)是一种常见的推荐机制,它依赖于用户-项目评分。然而,在许多领域和场景中,用户-项目评分数据的固有稀疏性可能会成为一个问题,限制了生成准确预测和有效推荐的能力。目前,大多数算法使用社交网络的二值信任关系来提高推荐质量,但未能考虑到每个朋友的信任强度差异和用户的评论信息。为此,社交网络内的推荐系统采用主题关注和概率矩阵分解(STAPMF)。我们通过提出一种结合概率矩阵分解和基于注意力的递归神经网络的新算法,将社交网络中的信任信息和评论文档中的主题信息结合起来,从用户的信任网络中提取项目潜在特征向量、用户个人潜在特征向量和用户社交隐藏特征向量,这些向量代表从用户的信任网络中提取的特征。使用真实数据集,我们表明与基于社交网络的推荐的现有最先进算法相比,推荐性能有了显著提高。