Suppr超能文献

基于数学矩阵分解的人工智能推荐系统中的跨域信息融合与个性化推荐

Cross-domain information fusion and personalized recommendation in artificial intelligence recommendation system based on mathematical matrix decomposition.

作者信息

Meng Xiaoyan

机构信息

Inner Mongolia Youth College of Political Science of Inner Mongolia Normal University, Hohhot, 010051, China.

Youth College of Political Science of Inner Mongolia Normal University, Hohhot, 010051, China.

出版信息

Sci Rep. 2024 Apr 3;14(1):7816. doi: 10.1038/s41598-024-57240-6.

Abstract

Given the challenges of inter-domain information fusion and data sparsity in collaborative filtering algorithms, this paper proposes a cross-domain information fusion matrix decomposition algorithm to enhance the accuracy of personalized recommendations in artificial intelligence recommendation systems. The study begins by collecting Douban movie rating data and social network information. To ensure data integrity, Levenshtein distance detection is employed to remove duplicate scores, while natural language processing technology is utilized to extract keywords and topic information from social texts. Additionally, graph convolutional networks are utilized to convert user relationships into feature vectors, and a unique thermal coding method is used to convert discrete user and movie information into binary matrices. To prevent overfitting, the Ridge regularization method is introduced to gradually optimize potential feature vectors. Weighted average and feature connection techniques are then applied to integrate features from different fields. Moreover, the paper combines the item-based collaborative filtering algorithm with merged user characteristics to generate personalized recommendation lists.In the experimental stage, the paper conducts cross-domain information fusion optimization on four mainstream mathematical matrix decomposition algorithms: alternating least squares method, non-negative matrix decomposition, singular value decomposition, and latent factor model (LFM). It compares these algorithms with the non-fused approach. The results indicate a significant improvement in score accuracy, with mean absolute error and root mean squared error reduced by 12.8% and 13.2% respectively across the four algorithms. Additionally, when k = 10, the average F1 score reaches 0.97, and the ranking accuracy coverage of the LFM algorithm increases by 54.2%. Overall, the mathematical matrix decomposition algorithm combined with cross-domain information fusion demonstrates clear advantages in accuracy, prediction performance, recommendation diversity, and ranking quality, and improves the accuracy and diversity of the recommendation system. By effectively addressing collaborative filtering challenges through the integration of diverse techniques, it significantly surpasses traditional models in recommendation accuracy and variety.

摘要

鉴于协同过滤算法中跨域信息融合和数据稀疏性的挑战,本文提出了一种跨域信息融合矩阵分解算法,以提高人工智能推荐系统中个性化推荐的准确性。该研究首先收集豆瓣电影评分数据和社交网络信息。为确保数据完整性,采用莱文斯坦距离检测来去除重复评分,同时利用自然语言处理技术从社交文本中提取关键词和主题信息。此外,利用图卷积网络将用户关系转换为特征向量,并使用独特的热编码方法将离散的用户和电影信息转换为二进制矩阵。为防止过拟合,引入岭正则化方法逐步优化潜在特征向量。然后应用加权平均和特征连接技术来整合来自不同领域的特征。此外,本文将基于项目的协同过滤算法与合并后的用户特征相结合,生成个性化推荐列表。在实验阶段,本文对四种主流数学矩阵分解算法:交替最小二乘法、非负矩阵分解、奇异值分解和潜在因子模型(LFM)进行了跨域信息融合优化。将这些算法与未融合的方法进行比较。结果表明,评分准确性有显著提高,四种算法的平均绝对误差和均方根误差分别降低了12.8%和13.2%。此外,当k = 10时,平均F1分数达到0.97,LFM算法的排名准确性覆盖率提高了54.2%。总体而言,结合跨域信息融合的数学矩阵分解算法在准确性、预测性能、推荐多样性和排名质量方面表现出明显优势,提高了推荐系统的准确性和多样性。通过有效整合多种技术应对协同过滤挑战,它在推荐准确性和多样性方面显著超越了传统模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验