Suppr超能文献

多靶点化学计量学建模、片段分析和虚拟筛选,以 ERK 抑制剂作为潜在的抗癌药物。

Multi-Target Chemometric Modelling, Fragment Analysis and Virtual Screening with ERK Inhibitors as Potential Anticancer Agents.

机构信息

Department of Chemistry and Biochemistry, University of Porto, 4169-007 Porto, Portugal.

出版信息

Molecules. 2019 Oct 30;24(21):3909. doi: 10.3390/molecules24213909.

Abstract

Two isoforms of extracellular regulated kinase (ERK), namely ERK-1 and ERK-2, are associated with several cellular processes, the aberration of which leads to cancer. The ERK-1/2 inhibitors are thus considered as potential agents for cancer therapy. Multitarget quantitative structure-activity relationship (mt-QSAR) models based on the Box-Jenkins approach were developed with a dataset containing 6400 ERK inhibitors assayed under different experimental conditions. The first mt-QSAR linear model was built with linear discriminant analysis (LDA) and provided information regarding the structural requirements for better activity. This linear model was also utilised for a fragment analysis to estimate the contributions of ring fragments towards ERK inhibition. Then, the random forest (RF) technique was employed to produce highly predictive non-linear mt-QSAR models, which were used for screening the Asinex kinase library and identify the most potential virtual hits. The fragment analysis results justified the selection of the hits retrieved through such virtual screening. The latter were subsequently subjected to molecular docking and molecular dynamics simulations to understand their possible interactions with ERK enzymes. The present work, which utilises in-silico techniques such as multitarget chemometric modelling, fragment analysis, virtual screening, molecular docking and dynamics, may provide important guidelines to facilitate the discovery of novel ERK inhibitors.

摘要

两种细胞外调节激酶(ERK)同工型,即 ERK-1 和 ERK-2,与多种细胞过程相关,其异常会导致癌症。因此,ERK-1/2 抑制剂被认为是癌症治疗的潜在药物。基于 Box-Jenkins 方法的多靶点定量构效关系(mt-QSAR)模型,使用包含 6400 种在不同实验条件下测定的 ERK 抑制剂的数据集进行了开发。第一个 mt-QSAR 线性模型是通过线性判别分析(LDA)构建的,提供了关于更好活性的结构要求的信息。该线性模型还用于片段分析,以估计环片段对 ERK 抑制的贡献。然后,采用随机森林(RF)技术生成高度预测的非线性 mt-QSAR 模型,用于筛选 Asinex 激酶文库并识别最有潜力的虚拟命中。片段分析结果证明了通过这种虚拟筛选检索到的命中物的选择是合理的。随后对这些命中物进行分子对接和分子动力学模拟,以了解它们与 ERK 酶可能的相互作用。本研究利用多靶点化学计量建模、片段分析、虚拟筛选、分子对接和动力学等计算技术,为发现新型 ERK 抑制剂提供了重要指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea9c/6864583/4fbb3dc5aec1/molecules-24-03909-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验